• 제목/요약/키워드: Electron collision cross sections set

검색결과 55건 처리시간 0.02초

MCS-BEq에 의한 CH4기체에서 전자에너지 분포함수 (Electron Energy Distribution function in CH4 by MCS-BEq)

  • 김상남
    • 전기학회논문지P
    • /
    • 제62권1호
    • /
    • pp.18-22
    • /
    • 2013
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron transport characteristic in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$_{\circ}\;K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

시뮬레이션에 의한 CH4 기체의 전리 및 확산계수 (Ionization and Diffusion Coefficients in CH4 Gas by Simulation)

  • 김상남
    • 전기학회논문지P
    • /
    • 제63권4호
    • /
    • pp.317-321
    • /
    • 2014
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron Ionization and diffusion Coefficients in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$^{\circ}K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

볼츠만 방정식을 이용한 Xe 가스의 전자 이동속도 해석 (The analysis of the electron drift velocity of Xenon gas by Boltzmann-equation)

  • 송병두;하성철;전병훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 연구회
    • /
    • pp.201-203
    • /
    • 2001
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. In this paper, the drift velocity of electron in Xenon gas calculated for range of E/N values from 0.01~500[Td] at the temperature is $300[^{\circ}K]$ and pressure is 1[Torr], using a set of electron collision cross sections determined by the authors and the values of drift velocity of electrons are obtained for TOF, PT, SST sampling method of Backward Prolongation by two term approximation Boltzmann equation method. it has also been used to predict swarm parameter using the values of cross section as input. The result of Boltzmann equation, the drift velocity of electrons, has been compared with experimental data by L. S. Frost and A. V. Phelps for a range of E/N. The swarm parameter from the study are expected to server as a critical test of current theories of low energy scattering by atoms and molecules.

  • PDF

볼츠만 방정식을 이용한 $SF_6+O_2$ 혼합가스의 전자이동속도 (The analysis of electrons drift velocity in $SF_6+O_2$ mixture gas by Boltzmann-Equation)

  • 송병두;하성철;전병훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.185-188
    • /
    • 2002
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We should grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. In this paper, the drift velocity of electron in $SF_6+O_2$ mixture gas calculated for range E/N values l~900[Td] at the temperature is 300[$^{\circ}K$] and pressure is 1[Torr], using a set of electron collision cross sections determined by the authors and the values of drift velocity of electrons are obtained for TOF, PT, SST sampling method of Backward Prolongation by two term approximation Boltzmann equation method. It has also been used to predict swarm parameter using the values of cross section as input. The result of Boltzmann equation, the drift velocity of electrons, has been compared with pure $SF_6$, pure $O_2$ and mixture gas.

  • PDF

$SF_6$ 가스의 전리 및 부착계수에 관한 연구 (A study on the electron ionization and attachment coefficients ins $SF_6$ gas)

  • 서상헌;유회영;김상남;하성철
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제10권6호
    • /
    • pp.96-103
    • /
    • 1996
  • 본 논문은 저자들에 위해 결정된 전자충돌단면적을 사용하여 몬테칼로 시뮬레이션 볼쯔만 방정식법에 의해 E/N:150∼180[Td] 범위에서 계산된 {{{{ { SF}_{ 6} }}}}가스의 전자수송 특성과 TOF법에서 구한 전자군 파라미터 값들을 나타냈다. 전자이동 속도 전자전력 또는 부착계숙, 종·횡방향 확산계수 등의 전자군 파라미터 값들은 E/N범위에서 실험치와 이론치가 일치하였다. 전자사태의 특성은 전자에너지의 비평형영역에서 고려되었다. 전자에너지 분포함수 는 평균에너지의 평형영역에 대하여 E/N:150∼180[Td]에서 해석하였다. 그 결과의 타당성은 TOF법에 의해 입증되었다.

  • PDF