• Title/Summary/Keyword: Electron beam source

Search Result 223, Processing Time 0.031 seconds

Solid State Cesium Ion Beam Sputter Deposition

  • Baik, Hong-Koo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.5-18
    • /
    • 1996
  • The solid state cesium ion source os alumino-silicate based zeolite which contains cerium. The material is an ionic conductor. Cesiums are stably stored in the material and one can extract the cesiums by applying electric field across the electrolyte. Cesium ion bombardment has the unique property of producing high negative ion yield. This ion source is used as the primary source for the production of a negative ion without any gas discharge or the need for a carrier gas. The deposition of materials as an ionic species in the energy range of 1.0 to 300eV is recently recognized as a very promising new thin film technique. This energetic non-thermal equilibrium deposition process produces films by “Kinetic Bonding / Energetic Condensation" mechansim not governed by the common place thermo-mechanical reaction. Under these highly non-equilibrium conditions meta-stable materials are realized and the negative ion is considered to be an optimum paeticle or tool for the purpose. This process differs fundamentally from the conventional ion beam assisted deposition (IBAD) technique such that the ion beam energy transfer to the deposition process is directly coupled the process. Since cesium ion beam sputter deposition process is forming materials with high kinetic energy of metal ion beams, the process provider following unique advantages:(1) to synthesize non thermal-equilibrium materials, (2) to form materials at lower processing temperature than used for conventional chemical of physical vapor deposition, (3) to deposit very uniform, dense, and good adhesive films (4) to make higher doposition rate, (5) to control the ion flux and ion energy independently. Solid state cesium ion beam sputter deposition system has been developed. This source is capable of producing variety of metal ion beams such as C, Si, W, Ta, Mo, Al, Au, Ag, Cr etc. Using this deposition system, several researches have been performed. (1) To produce superior quality amorphous diamond films (2) to produce carbon nitirde hard coatings(Carbon nitride is a new material whose hardness is comparable to the diamond and also has a very high thermal stability.) (3) to produce cesiated amorphous diamond thin film coated Si surface exhibiting negative electron affinity characteristics. In this presentation, the principles of solid state cesium ion beam sputter deposition and several applications of negative metal ion source will be introduced.

  • PDF

Fabrication of carbon nanotube fibers with nanoscale tips and their field emission properties

  • Shin, Dong-Hoon;Song, Ye-Nan;Sun, Yu-Ning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.468-468
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been considered as one of the promising candidate for next-generation field emitters because of their unique properties, such as high field enhancement factor, good mechanical strength, and excellent chemical stability. So far, a lot of researchers have been interested in field emission properties of CNT itself. However, it is necessary to study proper field emitter shapes, as well as the fundamental properties of CNTs, to apply CNTs to real devices. For example, specific applications, such as x-ray sources, e-beam sources, and microwave amplifiers, need to get a focused electron beam from the field emitters. If we use planar-typed CNT emitters, it will need several focal lenses to reduce a size of electron beam. On the other hand, the point-typed CNT emitters can be an effective way to get a focused electron beam using a simple technique. Here, we introduce a fabrication of CNT fibers with nanoscale point tips which can be used as a point-typed emitter. The emitter made by the CNT fibers showed very low turn-on electric field, high current density, and large enhancement factor. In addition, it showed stable emission current during long operation period. The high performance of CNT point emitter indicated the potential e-beam source candidate for the applications requiring small electron beam size.

  • PDF

Electron Accelerator Shielding Design of KIPT Neutron Source Facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.785-794
    • /
    • 2016
  • The Argonne National Laboratory of the United States and the Kharkov Institute of Physics and Technology of the Ukraine have been collaborating on the design, development and construction of a neutron source facility at Kharkov Institute of Physics and Technology utilizing an electron-accelerator-driven subcritical assembly. The electron beam power is 100 kW using 100-MeV electrons. The facility was designed to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The biological shield of the accelerator building was designed to reduce the biological dose to less than 5.0e-03 mSv/h during operation. The main source of the biological dose for the accelerator building is the photons and neutrons generated from different interactions of leaked electrons from the electron gun and the accelerator sections with the surrounding components and materials. The Monte Carlo N-particle extended code (MCNPX) was used for the shielding calculations because of its capability to perform electron-, photon-, and neutron-coupled transport simulations. The photon dose was tallied using the MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is very small, ~0.01 neutron for 100-MeV electron and even smaller for lower-energy electrons. This causes difficulties for the Monte Carlo analyses and consumes tremendous computation resources for tallying the neutron dose outside the shield boundary with an acceptable accuracy. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were utilized for this study. The generated neutrons were banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron dose. The weight windows variance reduction technique was also utilized for both neutron and photon dose calculations. Two shielding materials, heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary less than 5.0e-03 mSv/h during operation. The shield configuration and parameters of the accelerator building were determined and are presented in this paper.

Characteristics of Display -type Spherical Mirror Analyzer (평면 표시형 구면경분석기의 분광 특성)

  • ;A.kurokawa;S.Ichimura;J. Toth;K.Yoshihara
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.188-193
    • /
    • 1996
  • A new display -type spherical mirror analyzer has been characterized in terms of the performance and the auger spectra taken by using it. The final goal with the analyzer is to devleop SET(Surface Electron Spectroscopic Tomography) which is capable to provide a 3-dimensional layer-by-layer information nondestructively. This kind of analyzer was originally designed by H.Daimon. The main feature is to display 2-dimensional electronic structures directly onto a screen. In our case, an external micro-electron beam was employed as an excitation source. However, this invokes various problems because of the interference between the electron beam and the analyzer. The problems have been solved through the optimization of various parameters of the analyzer.

  • PDF

Pentachlorophenol(PCP) Decomposition by the Electron-beam Process (전자빔 공정에 의한 Pentachlorophenol 분해)

  • Kwon, Joongkuen;Kim, Jongoh;Kwon, Bumgun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.7
    • /
    • pp.49-54
    • /
    • 2012
  • This study focuses on the decomposition of pentachlorophenol(PCP) by an electron beam (E-beam) process. To attain this objective, we investigated the reactive species generated from E-beam process during irradiation (reaction time 0.6 s) and G-values of PCP decomposition and effects of pH and $H_2O_2$ as an additive. The effect of pH values was independent on the decomposition of PCP. However, during E-beam irradiation a scavenging effect of added $H_2O_2$ (> 1mM) for the decomposition of PCP was shown, which was supported by the decreased amounts of $Cl^-$ produced by the decomposition of PCP. Meanwhile, oxalic acid and unidentified organic chlorine compounds as by-products were increased by the addition of $H_2O_2$. Thus, in order to enhance the efficiency of PCP decomposition, the E-beam process has to consider a proper concentration of $H_2O_2$ as a well-known source of strong oxidant hydroxyl radical.

Study on Real-Time Digital Filter Design as Function of Scanning Frequency of Focused Electron Beam (집속 전자 빔 장치에서 스캔 주파수에 따른 실시간 디지털 필터 설계에 관한 연구)

  • Kim, Seung-Jae;Oh, Se-Kyu;Yang, Kyung-Sun;Jung, Kwang-Oh;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.479-485
    • /
    • 2011
  • To acquire images in a thermionic-scanning electron-beam system, a scanning unit is needed to control the electron beam emitted from the tungsten filament source. In scanning the electron beam on the solid surface, the signalto-noise ratio depends on the scanning frequency. We used a digital filter to reduce noise by analyzing the real-time frequency of a secondary electron signal. The noise and the true image signal were well separated. We designed the digital filter via a DSP floating-point operation, and the noise elimination resulted in enhanced image quality in a highresolution mode.

Germination and Seedling Growth in Response to Ionizing Radiation in Creeping Bentgrass (Agrostis palustris Huds.)

  • Lee, Yong Jin;Hong, Min Jeong;Kim, Dae Yeon;Lee, Tong Geon;Kim, Dong Sub;Kim, Jin Baek;Lee, Byung Cheol;Han, Young Hwan;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • It was previously pointed out that mutation is the ultimate source of variation. Adequate variation is needed for plant breeding if there is a limitation in natural genetic resources. When the ionizing radiation has been known to cause chromosomal and genomic alternations, it is widely used for inducing mutagenesis. The electron beam as an ionizing radiation is the principal physical mutagens that induces mutation and effectively used in plant breeding. Since dose-response relationships of electron beam in plant species are rarely known, we investigated the seed germination rate and early seedling growth of irradiated seeds of creeping bentgrass (Agrostis palustris Huds., cv Penn-A1) with various electron beam irradiating conditions (1, 1.3, 2 MeV at both 0.03 mA and 0.06 mA with dose of 100 Gy (Gray) and 0.03, 1, 1.3, 2 MeV at 0.03 mA with dose of 200 Gy, respectively) using electron accelerator at Korea Atomic Energy Research Institute. The growth parameters in terms of shoot length, primary root length, and secondary root length showed similar response between 0.06 / 1 (mA / MeV) at 100 Gy and 0.03 / 0.3 (mA / MeV) at 200 Gy. Bentgrass seed germination was mainly affected by the intensity of irradiated dose (Gray). Germination rate was lowered as the irradiated dose increased. On the other hand, early seedling growth was mainly governed not by the dose of radiation but by voltage.

Detailed Analysis of the KAERI nTOF Facility

  • Kim, Jong Woon;Lee, Young-Ouk
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.141-147
    • /
    • 2016
  • Background: A project for building a neutron time-of-flight (nTOF) facility is progressing. We expect that the construction will start in early 2016. Before that, a detailed simulation based on the current architectural drawings was performed to optimize the performance of our facility. Materials and Methods: Currently, several parts had been modified or changed from the original design to reflect requirements such as the layout of the electron beam line, shape of the vacuum chamber producing a neutron beam, and the underground layout of the nTOF facility. Detailed analysis for these modifications has been done with MCNP simulation. Results and Discussion: An overview of our photo-neutron source and KAERI nTOF facility were introduced. The numerical simulations for heat deposition, source term, and radiation shielding of KAERI nTOF facility were performed and the results are discussed. Conclusion: We are expecting that the construction of the KAERI nTOF facility will start in early 2016, and these results will be used as basic data.

Experimentally Minimized Contaminative Condition of Carbonaceous Artifacts in Transmission Electron Microscope (투과전자현미경에 타소질 불순물의 오염 최소화를 위한 실험 조건)

  • Kim, Young-Min;Choi, Joo-Hyoung;Song, Kyung;Kim, Yang-Soo;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.73-77
    • /
    • 2009
  • Contaminative artifacts such as carbonaceous materials on carbon-coated microgrids are unavoidable, which is induced by electron beam exposure inside electron microscopes. This phenomenon raise a source to produce confusing information to the samples investigated by analytical TEM, which should be alleviated as much as possible. As experimental precautions for reducing this unwanted effect, the use of $LN_2$ cooled anti-contaminator and pre-illumination of electron beam at low magnification can be helpful. Nevertheless, we should be cautious to set an illumination condition for microanalysis because the contaminative effect is dependent with the types of irradiation situations, which is well known to be a decisive factor for causing the carbonaceous artifacts. Accordingly, it is necessary that optimal illumination to minimize the contaminative effect should be selected for improving the accuracy of microanalysis. In this paper, we introduce the practical method to determine the optimal illumination condition by evaluating the contaminative effect as a function of instrumental spot size, which is directly linked with electron current density.

A Review on VOCs Control Technology Using Electron Beam

  • Son, Youn-Suk;Kim, Ki-Joon;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.63-71
    • /
    • 2010
  • The removal characteristics for aromatic and aliphatic VOCs by electron beam (EB) were discussed in terms of several removal variables such as initial VOC concentration, absorbed dose, background gas, moisture content, reactor material and inlet temperature. It was reviewed that only reactor material was an independent variable among the potential control factors concerned. It was also suggested that main mechanism by EB should be radical reaction for the VOC removal rather than that by primary electrons. It was discussed that the removal efficiency of benzene was lower than that of hexane due to a closed benzene ring. In the case of aromatic VOCs, it was observed that the decomposition of the VOCs with more functional groups attached on the benzene ring was much easier than those with less ones. As for aliphatic VOCs, it was also implied that the longer carbon chain was, the higher the removal efficiency became. An EB-catalyst hybrid system was discussed as an alternative way to remove VOCs more effectively than EB-only system due to much less by-products. This hybrid included supporting materials such as cordierite, Y-zeolite, and $\gamma$-alumina.