Pentachlorophenol(PCP) Decomposition by the Electron-beam Process

전자빔 공정에 의한 Pentachlorophenol 분해

  • 권중근 (조선이공대학교 생명환경화공과) ;
  • 김종오 (강릉원주대학교 공과대학 토목공학과) ;
  • 권범근 (조선이공대학교 생명환경화공과)
  • Published : 2012.07.01

Abstract

This study focuses on the decomposition of pentachlorophenol(PCP) by an electron beam (E-beam) process. To attain this objective, we investigated the reactive species generated from E-beam process during irradiation (reaction time 0.6 s) and G-values of PCP decomposition and effects of pH and $H_2O_2$ as an additive. The effect of pH values was independent on the decomposition of PCP. However, during E-beam irradiation a scavenging effect of added $H_2O_2$ (> 1mM) for the decomposition of PCP was shown, which was supported by the decreased amounts of $Cl^-$ produced by the decomposition of PCP. Meanwhile, oxalic acid and unidentified organic chlorine compounds as by-products were increased by the addition of $H_2O_2$. Thus, in order to enhance the efficiency of PCP decomposition, the E-beam process has to consider a proper concentration of $H_2O_2$ as a well-known source of strong oxidant hydroxyl radical.

본 연구에서는 전자빔(E-beam) 공정을 이용한 펜타클로로페놀(Pentachlorophenol, PCP)의 분해 특성을 조사하였다. 이를 위해 주어진 반응시간(0.6 s) 동안 생성될 수 있는 각종 반응성 화학종의 농도를 예측하였으며, PCP 분해에 미치는 pH와 과산화수소의 영향 및 이에 따른 G-value 등을 조사하였다. 실험결과, 전자빔공정에서 PCP의 분해는 pH의 영향을 받지 않았다. 1mM 이하의 과산화수소의 주입은 PCP 분해를 촉진시킬 수 있으나 그 이상의 과산화수소의 주입은 오히려 PCP의 분해를 감소시키거나 부산물의 형성을 유도할 것으로 관찰되었다. 특히, 옥살산과 미확인된 유기염소 성분의 농도를 증가시키는 것으로 나타났다. 그래서 전자빔공정에서 수산화라디칼의 발생원으로써 적절한 농도의 과산화수소 주입이 고려되어야 할 것으로 생각된다.

Keywords

References

  1. Andrew Hong, P. K., Zeng, Y.(2002), Degradation of Pentachlorophenol by Ozonation and Biodegradability of Intermediates, Water Research, Vol. 36, Issues 17, pp. 4243-4254. https://doi.org/10.1016/S0043-1354(02)00144-6
  2. Anotai, J., Wuttipong, R., Visvanathan, C.(2006), Oxidation and Detoxification of Pentachlorophenol in Aqueous Phase by Ozonation, Journal of Environmental Management, Vol. 85, Issue 2, pp. 345-349.
  3. Benitez, F. J., Acero, J. L., Real, F. J., Garcia, J.(2003), Kinetics of Photodegradation and Ozonation of Pentachlorophenol, Chemosphere, Vol. 51, Issue 8, pp. 651-662. https://doi.org/10.1016/S0045-6535(03)00153-X
  4. Bettoli, M. G., Ravanelli, M., Tositti, L., Tubertini, O., Guzzi, L., Martinotti, W., Gueirazza, G., Tamba, M.(1998), Radiation Induced Decomposition of Halogenated Organic Compounds in Water, Radiation Physics Chemistry, Vol. 52, Issue 1-6, pp. 327-331. https://doi.org/10.1016/S0969-806X(98)00027-9
  5. Bielski, B.H.J., Cabelli, D. E., Arudi, R. L. and Ross, A. B.(1985), Reactivity of $HO_2/O_2^-$ radicals in Aqueous Solution, Journal of Physical and Chemical Reference Data, Vol. 14, Issue 4, pp. 1041-1051. https://doi.org/10.1063/1.555739
  6. Buxton G. V., Greenstock C. L., Helman W. P., Ross A. B.(1988), Critical Review of Rate Constants for Reactions of Hydrated Electron, Hydrogen Atoms and Hydroxyl Radicals (OH/O-) in Aqueous Solution, Journal of Physical and Chemical Reference Data, Vol. 17, Issue 2, pp. 513-886. https://doi.org/10.1063/1.555805
  7. Fang, X., He, Y., Liu, J., Wu, J.(1998), Oxidative Decomposition of Pentachlorophenol in Aqueous Solution, Radiation Physics Chemistry, Vol. 53, Issue 4, pp. 411-415. https://doi.org/10.1016/S0969-806X(98)00128-5
  8. Gehringer, P., Fiedler, H.(1998), Design of a Combined Ozoen/ E-beam Process for Waste and Economic Feasibility of the Process, Radiation Physics Chemistry, Vol. 52, Issue 1-6, pp. 345-349. https://doi.org/10.1016/S0969-806X(98)00031-0
  9. Getoff, N.(1996), Radiation-Induced Degradation of Water Pollutants-State of the Art, Radiation Physics Chemistry, Vol. 47, Issue 4, pp. 581-593. https://doi.org/10.1016/0969-806X(95)00059-7
  10. He, Y., Liu, J., Lu, Y., Wu, J.(2002), Gamma Radiation Treatment of Pentachlorophenol, 2,4-dichlorophenol and 2- chlorophenol in water, Radiation Physics Chemistry, Vol. 65, Issue 4-5, pp. 565-570. https://doi.org/10.1016/S0969-806X(02)00364-X
  11. Ho, T-F., Bolton, J. R.(1998), Toxicity Changes During the UV Treatment of Pentachlorophenol in Dilute Aqueous Solution, Water Research, Vol. 32, Issue 2, pp. 489-497. https://doi.org/10.1016/S0043-1354(97)00219-4
  12. Kwon, B. G., Kim, E., Lee, J.(2009a), Pentachlorophenol Decomposition by Electron Beam Process Enhanced in the Presence of Fe(III)-EDTA, Chemosphere, Vol. 74, Issue 10, pp. 1335-1339. https://doi.org/10.1016/j.chemosphere.2008.11.049
  13. Kwon, B. G., Yoon, J. Y.(2009b), Superoxide Anion Radical : Principle and Application, Journal of the Korean Industrial and Engineering Chemistry, Vol. 20, Issue 6, pp. 593-602.
  14. Lin K., Cooper W. J., Nickelsen M. G., Kurucz C. N., Waite T. D.(1995), Decomposition of Aqueous Solutions of Phenol using High Energy E-beam, Applied Radiation & Isotopes, Vol. 46, Issue 12, pp. 1307-1316. https://doi.org/10.1016/0969-8043(95)00236-7
  15. Mak F. T., Zele S. R., Cooper W. J., Kurucz C. N., Waite T. D., Nickelsen M. G.(1997), Kinetic Modeling of Carbon Tetrachloride, Chloroform and Methylene Chloride Removal form Aqueous Solutions Using the E-beam Process, Water Research, Vol 31, Issue 2, pp. 219-228. https://doi.org/10.1016/S0043-1354(96)00264-3
  16. Nickelsen M. G., Cooper W. J., Kurucz. C. N., Waite T. D.(1992), Removal of Benzene and Selected Alkyl-substituted Benzenes from Aqueous Solution Utilizing Continuous High-Energy Electron Irradiation, Environmental Science Technology, Vol. 26, Issue 1, pp. 144-152. https://doi.org/10.1021/es00025a016
  17. Nickelsen M. G., Cooper W. J., Lin K., Kurucz C. N.(1994), High Energy E-beam Generation of Oxidants for the Treatment of Benzene and Toluene in the Presence of Radical Scavengers, Water Research, Vol. 28, Issue 11, pp. 1227-1237. https://doi.org/10.1016/0043-1354(94)90211-9
  18. Pecchi, G., Reyes, P., Sanhueza, P., Villasenor, J.(2001), Photocatalytic Degradation of Pentachlorophenol on TiO2sol-gelcatalysts, Chemosphere, Vol. 43, Issue 2, pp. 141-146. https://doi.org/10.1016/S0045-6535(00)00265-4
  19. Quan, X., Ruan, X., Zhao, H., Chen, S., Zhao, Y.(2007), Photoelectrocatalytic Degradation of Pentachlorophenol in Aqueous Solution using a TiO2 Nanotube Film Electrode, Environmental Pollution, Vol. 147, Issue 2, pp. 409-414. https://doi.org/10.1016/j.envpol.2006.05.023
  20. Schmelling, D. C., Poster, D. L., Chaychian, M., Neta, P., Silverman, J., Al-Sheikhly, M.(1998), Degradation of Polychlorinated Biphenyls Induced by Ionzing Radiation in Aqueous Micellar Solutions, Environmental Science Technology, Vol. 32, Issue 2, pp. 270-275. https://doi.org/10.1021/es9704601
  21. Sharma, A. K., Josephson, G. B., Camaioni, D. M., Goheen, S., C.(2000), Destruction of Pentachlorophenol Using Glow Discharge Plasma Process, Environmental Science Technology, Vol. 34, Issue 11, pp. 2267-2272. https://doi.org/10.1021/es981001i
  22. Weihua, S., Zheng, Z., Rami, A-S., Tao, Z., Desheng, H.(2002), Degradation and Detoxification of Aqueous Nitrophenol Solutions by Electron Beam Irradiation, Radiation Physics and Chemistry, Vol. 65. Issue 4-5, pp. 559-563. https://doi.org/10.1016/S0969-806X(02)00365-1
  23. Wang, S., Huang, B., Wang, Y., Liao, L.(2006), Comparison of Enhancement of Pentachlorophenol Sonolysis at 20 kHz by Dual-frequency Sonication, Ultrasonics Sonochemistry, Vol. 13, Issue 6, pp. 506-510. https://doi.org/10.1016/j.ultsonch.2005.10.004
  24. Zona R., Schimid S., Solar. S.(1999), Detoxification of Aqueous Chlorophenol Solutions by Ionizing Radiation, Water Research, Vol. 33, Issue 5, pp. 1314-1319. https://doi.org/10.1016/S0043-1354(98)00319-4