• 제목/요약/키워드: Electron beam source

Search Result 220, Processing Time 0.031 seconds

마이크로 칼럼의 전자 방출원 위치 오차의 영향 (Effect of the Off-axis distance of the Electron Emitting Source in Micro-column)

  • 이응기
    • 반도체디스플레이기술학회지
    • /
    • 제9권1호
    • /
    • pp.17-21
    • /
    • 2010
  • Currently miniaturized electron-optical columns find their way into electron beam lithography systems. For better lithography process, it is required to make smaller spot size and longer working distance. But, the micro-columns of the multi-beam lithography system suffer from chromatic and spherical aberration, even when the electron beam is exactly on the symmetric axis of the micro-column. The off-axis error of the electron emitting source is expected to become worse with increasing off-axis distance of the focusing spot. Especially the electron beams far from the system optical axis have a non-negligible asymmetric intensity distribution in the micro-column. In this paper, the effect of the off-axis e-beam source is analyzed. To analyze this effect is to introduce a micro-column model of which the e-beam emitting source is aligned with the center of the electron beam by shifting them perpendicular to the system optical axis. The presented solution can be used to analysis the performance of the multi-electron-beam system. The performance parameters, such as the working distances and the focusing position are obtained by the computational simulations as a function of the off-axis distance of the emitting source.

OPTIMIZATION OF OPERATION PARAMETERS OF 80-KEV ELECTRON GUN

  • Kim, Jeong Dong;Lee, Yongdeok;Kang, Heung Sik
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.387-394
    • /
    • 2014
  • A Slowing Down Time Spectrometer (SDTS) system is a highly efficient technique for isotopic nuclear material content analysis. SDTS technology has been used to analyze spent nuclear fuel and the pyro-processing of spent fuel. SDTS requires an external neutron source to induce the isotopic fissile fission. A high intensity neutron source is required to ensure a high for a good fissile fission. The electron linear accelerator system was selected to generate proper source neutrons efficiently. As a first step, the electron generator of an 80-keV electron gun was manufactured. In order to produce the high beam power from electron linear accelerator, a proper beam current is required form the electron generator. In this study, the beam current was measured by evaluating the performance of the electron generator. The beam current was determined by five parameters: high voltage at the electron gun, cathode voltage, pulse width, pulse amplitude, and bias voltage at the grid. From the experimental results under optimal conditions, the high voltage was determined to be 80 kV, the pulse width was 500 ns, and the cathode voltage was from 4.2 V to 4.6 V. The beam current was measured as 1.9 A at maximum. These results satisfy the beam current required for the operation of an electron linear accelerator.

Development and Evaluation of an Electron Beam Source for Microscopy and Its Applications

  • Ahn, Seung-Joon;Oh, Tae-Sik;Kim, Ho-Seob;Ahn, Seong-Joon
    • Journal of the Optical Society of Korea
    • /
    • 제14권2호
    • /
    • pp.127-130
    • /
    • 2010
  • We have developed an efficient electron beam (e-beam) source, a microcolumn, that can be used as a source module for of microscopy and its applications. To obtain a low operating voltage, a very sharp cold field electron emitter was developed by electrochemically etching a tungsten wire. Laser diffraction was used for the fabrication of high-quality electron lenses and for their precise alignment. The measurement of the e-beam currents, and SEM images captured by the microcolumn confirmed the potential of the device as a very good e-beam source.

전자빔 증발원을 이용한 물질의 증발 특성 (Evaporation Characteristics of Materials from an Electron Beam Evaporation Source)

  • 정재인;양지훈;박혜선;정재훈;송민아
    • 한국표면공학회지
    • /
    • 제44권4호
    • /
    • pp.155-164
    • /
    • 2011
  • Electron beam evaporation source is widely used to prepare thin films by physical vapor deposition because it is very effective to vaporize materials and there is virtually no limit to vaporize materials including metals and compounds such as oxide. In this study, evaporation characteristics of various metals and compounds from an electron beam evaporation source have been studied. The 180 degree deflection type electron beam evaporation source which has 6-hearth crucibles and is capable of inputting power up to 10 kW was employed for evaporation experiment. 36 materials including metals, oxides and fluorides have been tested and described in terms of optimum crucible liner, evaporation state, stability, and so on. Various crucible liners have been tried to find out the most effective way to vaporize materials. Two types of crucible liners have been employed in this experiment. One is contact type liner, and the other is non-contact type one. It has been tried to give the objective information and the most effective evaporation method on the evaporation of materials from the electron beam evaporation source. It is concluded that the electron beam evaporation source can be used to prepare good quality films by choosing the appropriate crucible liner.

Monte Carlo 수치해석법을 이용한 저 에너지 초소형 마이크로칼럼에 사용되는 전자렌즈의 모양에 따른 전자빔 특성 연구 (Research on the electron-beam characteristics according to the shape of electron lenses in low-energy microcolumn using Monte Carlo numerical analysis)

  • 김영철;김호섭;김대욱;안승준
    • 한국산학기술학회논문지
    • /
    • 제9권1호
    • /
    • pp.23-28
    • /
    • 2008
  • 마이크로칼럼에 사용되는 전자렌즈는 MEMS 공정으로 정밀하게 가공되어 기존의 전자칼럼에 비하여 광학수차를 최소화 할 수 있으며, 이는 전자칼럼의 성능 향상에 주요한 요소로 작용한다. 습식 식각과 건식 식각에 의해 형성되는 전자렌즈의 모양과 배열조합에 따른 전자 광학계 연구는 중요한 의미가 있다. 마이크로칼럼은 전자방출원, source 렌즈, deflector, focus 렌즈(Einzel 렌즈)로 구성되는데, 전자빔의 특성에 가장 큰 영향을 주는 source 렌즈의 구성 요소 중 extractor와 limiting aperture의 모양에 따른 전자빔 특성을 조사하여 마이크로칼럼 제작에 있어서 최적화된 전자렌즈 조합을 도출하였다.

전자현미경의 전자원 (Electron sources for electron microsocpes)

  • 조복래
    • 진공이야기
    • /
    • 제2권2호
    • /
    • pp.24-28
    • /
    • 2015
  • The brightness of an electron source, along with the aberrations of an objective lens, determines the image resolution and beam current on samples, which are two important parameters for evaluating the performance of an electron microscope. Here we introduce thermal electron source, Schottky emitter and cold field electron emitter. Thermal electron source is the cheapest and stable electron source but it has the lowest brightness. Schottky emitter is 10000 times brighter than tungsten thermal electron source, but requires ultrahigh vacuum operating condition. Cold field electron emitter is 10 times brighter than Schottky emitters, but it is rather unstable and its operation requires most stringent vacuum condition, hindering its widespread use.

Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations

  • Chang M. Kang;Seung-Tae Jung;Seong-Hwan Pyo;Youjung Seo;Won-Gu Kang;Jin-Kyu Kim;Young-Chang Nho;Jong-Seok Park;Jae-Hak Choi
    • Nuclear Engineering and Technology
    • /
    • 제55권12호
    • /
    • pp.4678-4684
    • /
    • 2023
  • Using the Monte Carlo method, the impact of the angular distribution of the electron source on the dose distribution for the 2.5 MeV ELV electron accelerator was explored. The experiment measured the 3-D dose distribution in the irradiation chamber for electron energies of 1.0 MeV and 2.5 MeV. The simulation used the MCNP6.2 code to evaluate three angular distribution models of the source: a mono-directional beam, a cone shape, and a triangular shape. Of the three models, the triangular shape with angles θ = 30°, φ = 0° best represents the angle of the scan hood through which the electron beam exits. The MCNP6.2 simulation results demonstrated that the triangular model is the most accurate representation of the angular distribution of the electron source for the 2.5 MeV ELV electron accelerator.

A Study on Effective Source-Skin Distance using Phantom in Electron Beam Therapy

  • Kim, Min-Tae;Lee, Hae-Kag;Heo, Yeong-Cheol;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.15-19
    • /
    • 2014
  • In this study, for 6-20 MeV electron beam energy occurring in a linear accelerator, the authors attempted to investigate the relation between the effective source-skin distance and the relation between the radiation field and the effective source-skin distance. The equipment used included a 6-20 MeV electron beam from a linear accelerator, and the distance was measured by a ionization chamber targeting the solid phantom. The measurement method for the effective source-skin distance according to the size of the radiation field changes the source-skin distance (100, 105, 110, 115 cm) for the electron beam energy (6, 9, 12, 16, 20 MeV). The effective source-skin distance was measured using the method proposed by Faiz Khan, measuring the dose according to each radiation field ($6{\times}6$, $10{\times}10$, $15{\times}150$, $20{\times}20cm^2$) at the maximum dose depth (1.3, 2.05, 2.7, 2.45, 1.8 cm, respectively) of each energy. In addition, the effective source-skin distance when cut-out blocks ($6{\times}6$, $10{\times}10$, $15{\times}15cm^2$) were used and the effective source-skin distance when they were not used, was measured and compared. The research results showed that the effective source-skin distance was increased according to the increase of the radiation field at the same amount of energy. In addition, the minimum distance was 60.4 cm when the 6 MeV electron beams were used with $6{\times}6$ cut-out blocks and the maximum distance was 87.2 cm when the 6 MeV electron beams were used with $20{\times}20$ cut-out blocks; thus, the largest difference between both of these was 26.8 cm. When comparing the before and after the using the $6{\times}6$ cut-out block, the difference between both was 8.2 cm in 6 MeV electron beam energy and was 2.1 cm in 20 MeV. Thus, the results showed that the difference was reduced according to an increase in the energy. In addition, in the comparative experiments performed by changing the size of the cut-out block at 6 MeV, the results showed that the source-skin distance was 8.2 cm when the size of the cut-out block was $6{\times}6$, 2.5 cm when the size of the cut-out block was $10{\times}10$, and 21.4 cm when the size of the cut-out block $15{\times}15$. In conclusion, it is recommended that the actual measurement is used for each energy and radiation field in the clinical dose measurement and for the measurement of the effective source-skin distance using cut-out blocks.

PHOTO-NEUTRON SOURCE USING 2 GEV ELECTRON LINAC FOR RADIATION SHIELDING RESEARCH

  • Lee, Hee-Seock;Bak, Joo-Shik;Chung, Chin-Wha;Ban, Syuichi;Shin, Kazuo;Sato, Tatsuhiko
    • Journal of Radiation Protection and Research
    • /
    • 제26권3호
    • /
    • pp.333-335
    • /
    • 2001
  • The 2 GeV electron linac, the injector of the Pohang Light Source, was used as a photo-neutron source for radiation shielding research. The operational beam parameters are the nominal electron intensity of $0.5\;{\sim}5\;nC/sec$, the repetition rate of 10 Hz, and the beam pulse length of 1.0 nsec. One electron beam line was modified in order to install the target systems for producing pulsed photo-neutrons. The neutron spectrum and intensity were investigated by the time-of-flight technique. The reliable maximum energy of the measured neutrons was about 500 MeV. The number of neutrons above 20 MeV produced by one 1 GeV electron in a thick Pb target was about $6.45{\times}10^{-4}/sr$ at 90 degrees to the beam axis. The status of the photo-neutron source and the application research are presented.

  • PDF