• 제목/요약/키워드: Electron beam probe

검색결과 70건 처리시간 0.021초

주사 전자 현미경에서 전자빔 프르브 생성 (Creation of Electron Beam Probe in Scanning Electron Microscopy)

  • 임선종;이찬홍
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.52-57
    • /
    • 2008
  • Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lenes and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. Backscattered electron provide an useful signal for composition and local specimen surface inclination. Secondary electron is used far the formation of surface imagination. The steady electron beam probe is very important for the imagination formation and the brightness. In this paper, we show the results of developed elements that create electron beam probe and the measured beam probe in various acceleration voltages by Faraday cup. These data are used to analysis and improve the performance of the system in the development.

주사 전자 현미경에서 영상 획득에 필요한 구성 요소 구현 (Realization for Each Element for capturing image in Scanning Electron Microscopy)

  • 임선종;이찬홍
    • 한국레이저가공학회지
    • /
    • 제12권2호
    • /
    • pp.26-30
    • /
    • 2009
  • Scanning Electron Microscopy (SEM) includes high voltage generator, electron gun, column, secondary electron detector, scan coil system and image grabber. Column includes electron lenses (condenser lens and objective lens). Condenser lens generates fringe field, makes focal length and control spot size. Focal length represents property of lens. Objective lens control focus. Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lens and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. In this paper, we describe the result of research to develop the core elements for low-resolution SEM.

  • PDF

Electron Temperature, Plasma Density and Luminous Efficiency in accordance with Discharge Time in coplanar AC PDPs

  • Jeong, S.H.;Moon, M.W.;Oh, P.Y.;Jeong, J.M.;Ko, B.D.;Park, W.B.;Lee, J.H.;Lim, J.E.;Lee, H.J.;Han, Y.G.;Son, C.G.;Lee, S.B.;Yoo, N.L.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1203-1206
    • /
    • 2005
  • Electron temperature and plasma density in coplanar alternating-current plasma display panels (AC-PDP's) have been experimentally investigated in accordance with discharge time by a micro-probe in this experiment. The resolution of a step mortor to move in micro-Langmuir probe is 10um.[1-3] The used gas in this experiment is He-Ne-Xe (4%) mixure gas. And sustain voltage is 320V which is above of firing voltage for degradation. The electron temperature and plasma density can be obtained from current-voltage (I-V) characteristics of micro Langmuir probe, in which negative to positive bias voltage was applied to the probe. And Efficiency is calculated by formula related discharge power and light emission. Those experiments operated as various discharge time ($0{\sim}72$ Hours). As a result of this experiment, Electron Temperature was increased from 2eV to 5eV after discharge running time of 20 hours and saturates beyond 20 hours. The plasma density is inversely proportional to the square root of electron temperature. So the plasma density was decreased from $1.8{\times}10^{12}cm^{-3}$ to $8{\times}10^{11}cm^{-3}$ at above discharge running time. And the Efficiency was reduced to 70% at 60hours of discharge running time.

  • PDF

전자선 안정화에 의한 니켈 나노 입자가 분산된 탄소섬유의 전자기적 특성 향상 (Enhanced Electromagnetic Properties of Nickel Nanoparticles Dispersed Carbon Fiber via Electron Beam Irradiation)

  • 이영주;김현빈;이승준;강필현
    • 방사선산업학회지
    • /
    • 제9권1호
    • /
    • pp.15-20
    • /
    • 2015
  • Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat-treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

주사전자현미경 렌즈의 해석을 통한 최적의 빔 특성 연구 (Optimal Electron Beam Characteristics by Lenses Analysis Using Scanning Electron Microscopy)

  • 배진호;김동환
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.1-9
    • /
    • 2015
  • 이 논문은 SEM(Scanning Electron Microsopy) 경통부에서 전자빔의 집속특성을 최적화하기 위한 방법을 다루고 있다. SEM 에서 물체 표면을 확대하기 위해서는 경통부를 지나는 전자빔을 효과적으로 집속하여 표면에 충돌하는 프로브 직경을 줄이는 것이 중요하다. 이 전자빔의 집속정도를 나타내는 지표가 반배율이다. 본 연구는 전자빔의 집속특성을 효과적으로 구현하기 위해 그에 영향을 끼치는 경통부의 설계 인자들을 렌즈 해석과 광선 추적을 통해 알아본다. 이 결과를 근거로 민감도 분석을 수행하여 설계 인자들이 빔의 집속에 끼치는 영향의 정도를 정량적으로 비교해 볼 수 있다. 이러한 전자빔의 특성에 따른 설계 인자의 분석은 경통부 설계에 있어 중요한 기초 정보로 활용될 수 있다.

생산성 향상을 위한 멀티빔 리소그라피 (Multiple Electron Beam Lithography for High Throughput)

  • 최상국;이천희
    • 한국광학회지
    • /
    • 제16권3호
    • /
    • pp.235-238
    • /
    • 2005
  • 생산성 향상을 위하여 정렬된 마이크로칼럼을 이용하여 멀티-전자빔 리소그라피 장치를 개발하였다. 마이크로칼럼은 매우 작은 크기를 가지고 있어 병렬구조로 정렬하여 작동시킬 수 있다. Single Column Module(SCM) 구조의 멀티 전자빔 리소그라피 시스템과 전자칼럼을 제작하여 250 eV에서 300 eV 에너지 범위에서의 저에너지 마이크로칼럼 리소그라피를 성공적으로 수행하였다. 전자방출원에서 방출되는 전자빔의 총 전류가 $0.5\;{\mu}A$일 때, 샘플에서의 전류는 >1 nA으로 측정되었으며 리소그라피 패텅닝에서 사용된 working distance은 $\~1\;mm$였다.

정전형 8중극 비점수차 보정기가 내장된 극초소형 마이크로컬럼의 구조 설계 연구 (Study on the Structural Design of an Ultra-miniaturized Microcolumn with a Built-in Electrostatic Octupole Stigmator)

  • 오태식
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.52-61
    • /
    • 2023
  • We designed a novel ultra-miniaturized microcolumn structure having an stigmator to significantly improve throughput per unit time, which is the biggest disadvantage of microcolumns. We adopted the structure of the stigmator in the form of an electrostatic octupole electrode, and used an electrostatic quadrupole deflector with a relatively simple structure considering the increase in wiring due to the introduction of the stigmator. We have dramatically reduced the effect of astigmatism that occurs when the electron beam probe is scanned to the periphery of the target by introducing the stigmator between the control electrode and the deflector. As our numerical analysis simulation results, the field of view obtained as a result of this study is about 46.3% improved compared to our previous study, and the electron beam probe size of less than 10 nm was achieved in the entire field of view.

  • PDF

Discharge characterization of two-region arc plasma (TRAP) ion source

  • Kihyun Lee;Seung Ho Jeong;Tae-Seong Kim;Dae-Sik Chang;Sung-Ryul Huh
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3961-3968
    • /
    • 2024
  • The Korea Atomic Energy Research Institute (KAERI) is developing a novel Two-Region Arc Plasma Ion Source (TRAP) as a negative hydrogen (deuterium) ion source for a Neutral Beam Injection (NBI) system in a fusion tokamak. The TRAP ion source is based on a two-region configuration, comprising a high energy electron region that creates highly vibrationally excited molecules and a low electron temperature region that generates negative ions by attaching electrons to molecules. This configuration can be achieved by optimizing the filament position and magnetic cusp field. In order to optimize the TRAP configuration, the plasma parameters are investigated under various operating conditions, such as filament position, gas pressure, and arc power. Electron density and temperature are determined using Langmuir probe measurements. In this paper, the detailed experimental results are described and discussed.

Measurement of Electron Temperature and Plasma Density in Coplanar AC Plasma Display Panels.

  • Cho, Il-Ryong;Moon, Min-Yook;Ryu, Chung-Gon;Choi, Myung-Chul;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.748-751
    • /
    • 2003
  • The electron temperature and plasma density in coplanar alternating-current plasma display panels (AC-PDPs) have been experimentally investigated by a micro Langmuir probe and the high speed discharge images in this experiment.

  • PDF