• Title/Summary/Keyword: Electron accelerator

Search Result 256, Processing Time 0.029 seconds

Evaluation on the Sulfate Attack Resistance of Shotcrete with Aluminate Accelerator (알루미네이트계 급결제를 사용한 숏크리트의 황산염침식 저항성 평가)

  • Kim, Seoung-Su;Kim, Hong-Sam;Lee, Gyu-Phil;Kim, Dong-Gyou;Yoon, Ha-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.527-530
    • /
    • 2005
  • Shotcrete have become a deterioration which is used in the underground such as groundwater and soil in sulfate ion. Sulfate attack on concrete structures in service is not widespread, and the amount of laboratory-based research seems. to be disproportionately large. In this study, immersion test using $Na_2SO_4$ solution($1,2,5\%$) was performed to evalute the resistance of shotcrete. From the results of the immersion test for 112 days of exposure. In order to understand the deterioration mechanism due to seawater attack, test using scanning electron microscopy(SEM) analysis and X-ray diffraction showed that the deterioration mechanism due to sulfate attack in shotcrete.

  • PDF

Valence band of graphite oxide

  • Jeong, Hye-Gyeong;Kim, Gi-Jeong;Kim, Bong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.321-321
    • /
    • 2011
  • We have investigated the electronic structure of graphite oxide by photoelectron spectroscopy at the Pohang Accelerator Laboratory, Korea. The typical sp2 hybridization states found in graphite were also seen in graphite oxide. However, the ${\pi}$ state disappeared near the Fermi level because of bonding between the ${\pi}$ and oxygen-related states originating from graphite oxide, indicating electron transfer from graphite to oxygen and resulting in a downward shift of the highest occupied molecular orbital (HOMO) state to higher binding energies. The band gap opening increased to about 1.8 eV, and additional oxygen-related peaks were observed at 8.5 and 27 eV.

  • PDF

MM-22 Medical Microtron Accelerator for Radiotherapy (방사선 치료용 MM-22 의학용 마이크로트론 가속기)

  • Lee Dong-Hun;Bak Joo-Shik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.4 no.1
    • /
    • pp.47-52
    • /
    • 1990
  • The MM-22 medical microtron at Korea Cancer Center Hospital has been running for radiotherapy since it was installed in 1986. The microtron is a very flexible radiation therapy device with excellent radiation field for photon or electron therapy. The microtron accelerates elections from an energy of minimun 5.3MeV to an energy of maximum 22.5MeV. The electrons are led from the microtron to the treatment head via a beam transport system and are used for radiotherapy. Present paper describes the system structures and operating characteristics of the MM-22 microtron and its therapy unit.

  • PDF

X-ray Micro-Imaging Technique and Its Application to Micro-Bubbles in an Opaque Tube (X-ray Micro-Imaging 기법 소개 및 불투명 튜브 내부의 마이크로 버블 가시화 연구)

  • Lee Sang-Joon;Kim Seok;Paik Bu-Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.31-34
    • /
    • 2002
  • Imaging techniques using x-ray beam at high energies (>6KeV) such as contact radiography, projection microscopy, and tomography have been used to nondestructively discern internal structure of objects in material science, biology, and medicine. This paper introduces the x-ray micro-imaging method using 1B2 micro-probe line of PAL (Pohang Accelerator Laboratory). Cross-sectional information on low electron density materials can be obtained by probing a sample with coherent synchrotron x-ray beam in an in-line holography setup. Living organism such as plants, insects are practically transparent to high energy x-rays and create phase shift images of x-ray wave front. X-ray micro-images of micro-bubbles of $20\~120\;{\mu}m$ diameter in an opaque tube were recorded. Clear phase contrast images were obtained at Interfaces between bubbles and surrounding liquid due to different decrements of refractive index.

  • PDF

Dosimetry for Total Skin Electron Beam Therapy in Skin Cancer (피부암치료를 위한 전자선 전신피부 치료방법과 선량분포 측정)

  • Chu, Sung-Sil;Loh, John-Jk;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.107-113
    • /
    • 1992
  • Increasing frequency of skin cancer, mycosis fungoides, Kaposi's sarcoma etc, it need to treatment dose planning for total skin electron beam (TSEB) therapy. Appropriate treatment planning for TSEB therapy is needed to give homogeneous dose distribution throughout the entire skin surface. The energy of 6 MeV electron from the 18 MeV medical linear accelerator was adapted for superficial total skin electron beam therapy. The energy of the electron beam was reduced to 4.2 MeV by a $0.5\;cm\times90\;cm{\times}180\;cm$ acryl screen placed in a feet front of the patient. Six dual field beam was adapted for total skin irradiation to encompass the entire body surface from head to toe simultaneously. The patients were treated behind the acryl screen plate acted as a beam scatterer and contained a parallel-plate shallow ion chamber for dosimetry and beam monitoring. During treatment, the patient was placed in six different positions due to be homogeneous dose distribution for whole skin around the body. One treatment session delivered 400 cGy to the entire skin surface and patients were treated twice a week for eight consecutive weeks, which is equivalent to TDF value 57. instrumentation and techniques developed in determining the depth dose, dose distribution and bremsstrahlung dose are discussed.

  • PDF

Fabrication and Characterization of a One-dimensional Fiber-optic Dosimeter for Electron Beam Therapy Dosimetry (치료용 전자선 계측을 위한 1차원 광섬유 방사선량계의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Shin, Sang-Hun;Yoo, Wook-Jae;Jun, Jae-Hun;Lee, Bong-Soo;Moon, Joo-Hyun;Park, Byung-Gi
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.285-290
    • /
    • 2008
  • In this study, we have fabricated a one-dimensional fiber-optic dosimeter for electron beam therapy dosimetry. Each fiber-optic dosimeter has an organic scintillator with a plastic optical fiber and it is embedded and arrayed in the plastic phantom to measure one-dimensional high energy electron beam profile of clinical linear accelerator. The scintillating lights generated from each sensor probe are guided by plastic optical fibers to the multi-channel photodiode amplifier system. We have measured one-dimensional electron beam profiles in a PMMA phantom according to different field sizes and energies of electron beam. Also, the isodose and three-dimensional percent depth dose curves in a PMMA phantom are obtained using a one-dimensional fiber-optic dosimeter with different electron beam energies.

  • PDF

Study on the Applicability of Semiconductor Compounds for Dose Measurement in Electron Beam Treatment (전자선 치료 분야의 선량 측정을 위한 반도체 화합물의 적용가능성 연구)

  • Yang, Seungwoo;Han, Moojae;Shin, Yohan;Jung, Jaehoon;Choi, Yunseon;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this study, it was intended to replace the existing plane parallel ionization chamber, which requires cross-calibration in electron beam treatment. The semiconductor compounds HgI2 was fabricated as detector, and the characteristics of HgI2 detector for the 6, 9 and 12 MeV electron beam was analyzed in the linear accelerator. It was also intended to evaluate the possibility of substitution with existing detectors and their applicability as electron beam dosimetry and to use them as a basic study of the development of electronic beam dosimeter. As a result of reproducibility, RSD was 0.4246%, 0.5054%, and 0.8640% at 6, 9, and 12 MeV energy, respectively, indicating that the output signal was stable. As a result of the linearity, the R2 was 0.9999 at 6 MeV, 0.9996 at 9 MeV, and 0.9997 at 12 MeV showed that the output signal is proportional to HgI2 as the dose is increased. The HgI2 detector of this study is highly applicable to electron beam measurement, and it may be used as a basic research on electron beam detection.

Determination of Initial Beam Parameters of Varian 2100 CD Linac for Various Therapeutic Electrons Using PRIMO

  • Maskani, Reza;Tahmasebibirgani, Mohammad Javad;Hoseini-Ghahfarokhi, Mojtaba;Fatahiasl, Jafar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.17
    • /
    • pp.7795-7801
    • /
    • 2015
  • The aim of the present research was to establish primary characteristics of electron beams for a Varian 2100C/D linear accelerator with recently developed PRIMO Monte Carlo software and to verify relations between electron energy and dose distribution. To maintain conformity of simulated and measured dose curves within 1%/1mm, mean energy, Full Width at Half Maximum (FWHM) of energy and focal spot FWHM of initial beam were changed iteratively. Mean and most probable energies were extracted from validated phase spaces and compared with related empirical equation results. To explain the importance of correct estimation of primary energy on a clinical case, computed tomography images of a thorax phantom were imported in PRIMO. Dose distributions and dose volume histogram (DVH) curves were compared between validated and artificial cases with overestimated energy. Initial mean energies were obtained of 6.68, 9.73, 13.2 and 16.4 MeV for 6, 9, 12 and 15 nominal energies, respectively. Energy FWHM reduced with increase in energy. Three mm focal spot FWHM for 9 MeV and 4 mm for other energies made proper matches of simulated and measured profiles. In addition, the maximum difference of calculated mean electrons energy at the phantom surface with empirical equation was 2.2 percent. Finally, clear differences in DVH curves of validated and artificial energy were observed as heterogeneity indexes were 0.15 for 7.21 MeV and 0.25 for 6.68 MeV. The Monte Carlo model presented in PRIMO for Varian 2100 CD was precisely validated. IAEA polynomial equations estimated mean energy more accurately than a known linear one. Small displacement of R50 changed DVH curves and homogeneity indexes. PRIMO is a user-friendly software which has suitable capabilities to calculate dose distribution in water phantoms or computerized tomographic volumes accurately.

The Emission and Characteristics Measurement of Electron Beam and Basis Construction for Education Usage (전자빔 인출 및 빔 계측과 교육 활용을 위한 기반구축)

  • Lee, Dong-Hoon
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.257-264
    • /
    • 2007
  • The MM22 microtron has used as a cancer therapy machine from Nov. 1986 to Feb. 2006. This machine was moved and installed to a radiation research center to use as an education and research tool from treatment machine because of aging of MM22 microtron. In this paper, for extracting the electron beam from microtron, operation principle of the microtron, system characteristics of each module, and pulse structures were reviewed. The beam extraction and measurement were performed after measuring pulses of each major module and extraction trials in the beam line. After finishing the movement of MM22 microtron, the 30mA target current in the case of 10 MV X-ray beam was extracted and the beam flatness of radiation distribution was acquired within 3% error ratio after 100 MU was irradiated on X-omatV Film at SSD 100 cm and field size $10{\times}10cm^2$. As a result, the microtron movement and new installation was performed with success.

  • PDF

Comparative Study of Sterilization by Gamma-ray and Electron-Beam (감마선, 전자선에 의한 멸균 비교분석)

  • Jeong, Kyeonghwan;Park, Changhee
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.537-543
    • /
    • 2020
  • The elderly population in the modern society is growing rapidly due to advance medical technology and minimally invasive surgery. Therefore, as the tendency to use medical device is increasing, pathogenic infection is a concern. Therefore, the first aim of modern medicine is infection prevention in medical place. Recently, patient implants are increasing using 3D printing. Hydroxyapatite is used as a representative material. And, there haven't had currently absorbed dose standard for sterilization of hydroxyapatite discs. Escherichia coli and Streptococcus mutans contaminated on the surface of hydroxyapatite discs were irradiated at each absorbed dose of 0, 0.5, 1.0, 3.0, 5.0 kGy using Gamma-ray of cobalt and Electron-beam of linear accelerator. Then, the number of bacteria was measured in the sample by the decimal dilution method. After sterilization, a non-parametric testing method was performed to compare the survival of Escherichia coli and Streptococcus mutans. As a result, Escherichia coli was sterilized at 1 kGy or more and Streptococcus mutans at 3 kGy or more on absorbed dose. It is considered possible to perform sterilization at a lower value than the recommended absorbed dose of radiation sterilization.