• Title/Summary/Keyword: Electron Probe

Search Result 731, Processing Time 0.028 seconds

Free Volume in Polyers Note II。: Positron Annihilation lifetime Spectroscopy and Applications

  • G. Consolati;M. Pegoraro;L. Zanderighi
    • Korean Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.25-37
    • /
    • 1999
  • positron annihilation Lifetime Spectroscopy has been extensively applied in recent years to investigate the free volume in polymers owing to the capability of the electron-positron bound system (positronium) to probe the typical size of sub-nanometric cavities among the macromolecular chains. In this paper we show recent results obtained through this technique in some amorphous polymeric mem-branes(olyurethanes. PUs and polytrimethilsylilpropine PTMSP) after a brief survey of the general features of the annihilation process as well as of the experimental apparatus. Lifetime of o-ps decay({{{{ tau _3}}}}) in PUs increases going from sub {{{{ TAU _g}}}} to over {{{{ TAU _g}}}} temperatures following a sigmoid curve. The coefficient of dilatation of the free volume fraction is shown to be the sum of two contributes due to the variation with T of the number of holes and of their mean volume. PAL spectrum of PTMSP freshly prepared shows four lifetime components: {{{{ tau _3}}}} and {{{{ tau _4}}}}: only are useful for free volume study. Two kinds of holes of different equivalent radius are reported ({{{{ gamma _s}}}} 4.60 nm and {{{{ gamma _1}}}} 0.754) The equivalent volume does not change in a range of 100 K. however the physical aging increases density and decreases oxygen permeability while {{{{ gamma _s}}}} goes down to 0.374 and r1 to 0.735 The number of holes obtained from the intensities{{{{ IOTA _3}}}} and {{{{ IOTA _4}}}} of PAL spectra decreases with aging 21.7% and 3.5% for large and small holes respectively.

  • PDF

Thermoelectric characteristics depend on compositions of $Bi_2Te_3$ in mixed alloy with PbTe

  • Jung, Kyoo-Ho;Yim, Ju-Hyuk;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.11-11
    • /
    • 2010
  • In order to design for nano structured materials with enhanced thermoelectric properties, the alloys in the pseudo-binary $Bi_2Te_3$-PbTe system were investigated for their micro structure and thermal properties. For this synthesis the liquid alloys were cooled by water quenching method. The micro structure images were taken by using electron probe micro analyzer (EPMA). Dendritic and lamellar structures were clearly observed with the variation in the composition ratio between $Bi_2Te_3$ and PbTe. It was confirmed that a metastable compounds is $PbBi_2Te_4$ in the The $Bi_2Te_3$-PbTe system. The change in the composition increasing $Bi_2Te_3$ ratio causes to change structure from dendritic to lamellar. Seebeck coefficient of alloys 5 which the mixture rate of $Bi_2Te_3$ is 83% was measured as the highest value. In contrast, the others decreased by increasing $Bi_2Te_3$. n-type characteristics was observed at all condition except alloy 6 which $Bi_2Te_3$ ration is 91%. The power factors of all samples were calculated with Seebeck coefficient and resistivity. Also the thermal conductivity was measured by using laser flash analyzer (LFA). In this work, the microstructures and thermal properties have been measured as a function of ratio of $Bi_2Te_3$ in the $Bi_2Te_3$-PbTe system.

  • PDF

Influence of Microhardness and Mineral Content on Fluoride Materials Containing Low Concentration with Sodium Fluoride (저농도의 불화나트륨을 함유한 불소제제가 치질의 강도와 화학적 성분에 미치는 영향)

  • Kim, Hye-Young;Nam, Seoul-Hee;Jeong, Mi-Ae
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.312-319
    • /
    • 2013
  • The purpose of this study was to evaluate the efficacy of gargle and toothpaste containing low concentration with sodium fluoride on the remineralization through the surface microhardness and mineral content in enamel. After 4 weeks-application, the enamel surface was measured using microhardness tester and the calcium (Ca) and phosphorous (P) concentration of mineral content by electron probe microanalyzer (EPMA) analysis. By combining fluoridated gargle with toothpaste, a remineralized enamel resulted in significantly significant differences among the four groups (p<0.05). The Ca change treated with 0.23% fluoridated toothpaste and 0.02% fluoridated gargle with 0.23% toothpaste demonstrated the highest among the other groups. In conclusion. the fluoridated gargle with toothpaste by low concentration showed a significantly greatest synergistic effect on remineralization of the enamel than the other groups.

Retardation of Grain Growth of Copper Electrodeposits by Organic Additive (유기첨가제를 통한 구리도금층 결정립 성장의 억제)

  • Jeong, Yong-Ho;Park, Chae-Min;Lee, Hyo-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.139-139
    • /
    • 2016
  • 반도체 다마신배선용 도금용 구리도금첨가제는 대표적으로 accelerator, suppressor 및 leveler 첨가제를 사용하여 다마신 패턴을 채우고 평탄화를 시킬 수 있다. Si 반도체 공정기술에 기반한 정확한 구조분석을 통해 각각의 첨가제의 기능이 비교적 체계적으로 연구되었으며, 최근에는 유속영향을 많이 받는 것으로 알려진 leveler 첨가제에 대한 연구가 활발히 진행되고 있다. 본 연구는 대표적 leveler 첨가제의 하나인 Janus Green B(JGB, $C_{30}H_{31}ClN_6$)를 0 ~ 1 mM을 첨가하여 Si 기판위에 증착된 Cu 씨드층 상의 도금후 표면상태 및 불순물의 농도를 분석하고, 이 박막층들의 결정립 성장 경향성을 electron backscattered diffraction(EBSD) 분석을 통해 진행하였다. C, H, N 등의 불순물이 JGB 농도와 선형적 관계를 가지고 증가하는 것을 알 수 있었으며, S와 O의 불순물도 JGB 농도 증가에 따라 증가하는 것을 알 수 있었다. 또한 0.1 mM 첨가한 경우에 60% 정도 결정립 성장이 진행된 것을 알 수 있었으며, 0.2 mM을 넣은 경우에는 결정립 성장이 일어나지 않은 것을 알 수 있었다. 흥미로운 점은 4 point probe를 통한 면저항 측정을 통해 EBSD를 통한 결정립성장이 관찰되지 않은 0.2 mM JGB를 첨가한 경우에 대해서도 면저항의 감소가 관찰되며, 오히려 JGB 농도가 높을수록 이러한 면저항의 감소가 빠르게 시작되는 것을 관찰할 수 있었다. 이는 JGB 농도 증가에 따라 박막층의 불순물의 농도가 증가하고 막내에 존재하는 불순물의 농도가 증가하면 내부응력장이 커짐으로 인해 더욱 빠른 속도로 불순물의 재배치가 일어난 것으로 보인다. 이러한 불순물이 결정립계면에 편석되는 경우에 pinning을 통해 결정립계면의 이동을 저하시킬 수 있으므로 결정립의 성장 억제가 가능해진 것으로 판단된다.

  • PDF

Development of a Formic Acid Fuel Cell Anode by Multi-layered Bismuth Modification (Bismuth를 이용한 다층구조의 개미산 연료전지 연료전극 개발)

  • Kwon, Youngkook;Uhm, Sunghyun;Lee, Jaeyoung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.697-700
    • /
    • 2008
  • The underpotential deposited Bi on Pt($Bi_{upd}/Pt$) anode for formic acid fuel cells (FAFCs) was developed using multi-layered preparation method for better electrocatalytic utilization of Pt. The electron probe microanalysis (EPMA) result indicated that $Bi_{upd}$ remains through the catalyst layer during stability test. In performance test, the multilayered $Bi_{upd}$ on Pt black showed superior performance by approximately 200 mV at current density of $150mA/cm^2$ compared with PtRu black anode catalyst. Based on preparation condition of $Bi_{upd}/Pt$ black, carbon supported $Bi_{upd}/Pt/C$ electrode was prepared and it showed enhanced performance and stability.

Phase Constitution of the Palladium and Tellurium System (팰래듐과 테루리움계의 상평형 연구)

  • ;G.Y.Chao, L.J.Cabri
    • Korean Journal of Crystallography
    • /
    • v.1 no.2
    • /
    • pp.66-75
    • /
    • 1990
  • The Pd-Te system has been investigated by differential thermal analysis, X-ray diffration, electron probe microanalysis and reflected light microscopy. New phase relations in 0-50at% Te portion of the binary system are proposed. Eight binary phases exist in the system:Pd17Te4, Pd20Te7.PdsTe3, P477e3, P497e4, P637e2, PeTe and PaTe2. Of these, P677e3 is a newly reported phase. P4177e4 is cubic, space group Fd3c, with a=12.678(5)A. The X-ray powder data of PdsTe3, indexed on an orthorhombic cell, give a= 12.843(3), b=15.126(3), c: 11.304(2)A and those of PdTTe.1, indexed on a monoclinic cell, give a=7.444(1), b= 13.918(2) , c=8.873(2)A. p =92.46(2). Some physical and optical properties of synthetic phases in the system are also reported.

  • PDF

Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of MWCNT-reinforced Polypropylene Nanocomposites (다중벽 탄소나노튜브강화 폴리프로필렌 나노복합재료의 전자파 차폐효과 및 기계적 특성)

  • Yim, Yoon-Ji;Seo, Min-Kang;Kim, Hak-Yong;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.494-499
    • /
    • 2012
  • In this work, the effect of multi-walled carbon nanotube (MWCNT) on electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of MWCNT-reinforced polypropylene (PP) nanocomposites were investigated with varying MWCNT content from 1 to 10 wt%. Electric resistance was tested using a 4-point-probe electric resistivity tester. The EMI SE of the nanocomposites was evaluated by means of the reflection and adsorption methods. The mechanical properties of the nanocomposites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The morphologies were observed by scanning electron microscopy (SEM). From the results, it was found that the EMI SE was enhanced with increasing MWCNT content, which played a key factor to determine the EMI SE. The $K_{IC}$ value was increased with increasing MWCNT content, whereas the value decreased above 5 wt% MWCNT content. This was probably considered that the MWCNT entangled with each other in PP due to an excess of MWCNT.

POST-IRRADIATION ANALYSES OF U-MO DISPERSION FUEL RODS OF KOMO TESTS AT HANARO

  • Ryu, H.J.;Park, J.M.;Jeong, Y.J.;Lee, K.H.;Lee, Y.S.;Kim, C.K.;Kim, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.847-858
    • /
    • 2013
  • Since 2001, a series of five irradiation test campaigns for atomized U-Mo dispersion fuel rods, KOMO-1, -2, -3, -4, and -5, has been conducted at HANARO (Korea) in order to develop high performance low enriched uranium dispersion fuel for research reactors. The KOMO irradiation tests provided valuable information on the irradiation behavior of U-Mo fuel that results from the distinct fuel design and irradiation conditions of the rod fuel for HANARO. Full size U-Mo dispersion fuel rods of 4-5 $g-U/cm^3$ were irradiated at a maximum linear power of approximately 105 kW/m up to 85% of the initial U-235 depletion burnup without breakaway swelling or fuel cladding failure. Electron probe microanalyses of the irradiated samples showed localized distribution of the silicon that was added in the matrix during fuel fabrication and confirmed its beneficial effect on interaction layer growth during irradiation. The modifications of U-Mo fuel particles by the addition of a ternary alloying element (Ti or Zr), additional protective coatings (silicide or nitride), and the use of larger fuel particles resulted in significantly reduced interaction layers between fuel particles and Al.

Effect of Iodine-coated Bipolar Plates on the Performance of a Polymer Exchange Membrane (PEM) Fuel Cell (고분자 전해질 막 연료전지에서의 아이오딘이 코팅된 분리판의 성능 효과)

  • Kim, Taeeon;Juon, Some;Cho, Kwangyeon;Shul, Yonggun
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • Polymer exchange membrane (PEM) fuel cells have multifunctional properties, and bipolar plates are one of the key components in these fuel cells. Generally, a bipolar plate has a gas flow path for hydrogen and oxygen liberated at the anode and cathode, respectively. In this study, the influence of iodine applied to a bipolar plate was investigated. Accordingly, we compared bipolar plates with and without iodine coating, and the performances of these plates were evaluated under operating conditions of $75^{\circ}C$ and 100% relative humidity. The membrane and platinum-carbon layer were affected by the iodine-coated bipolar plate. Bipolar plates coated with iodine and a membrane-electrode assembly (MEA) were investigated by electron probe microanalyzer (EPMA) and energy-dispersive x-ray spectroscopy (EDS) analysis. Polarization curves showed that the performance of a coated bipolar plate is approximately 19% higher than that of a plate without coating. Moreover, electrochemical impedance spectroscopy (EIS) analysis revealed that charge transfer resistance and membrane resistance decreased with the influence of the iodine charge transfer complex for fuel cells on the performance.

Measurement of Partial Conductivity of 8YSZ by Hebb-Wagner Polarization Method

  • Lim, Dae-Kwang;Guk, Jae-Geun;Choi, Hyen-Seok;Song, Sun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.299-303
    • /
    • 2015
  • The electrolyte is an important component in determining the performance of Fuel Cells. Especially, investigation of the conduction properties of electrolytes plays a key role in determining the performance of the electrolyte. The electrochemical properties of Yttrium stabilized zirconia (YSZ) were measured to allow the use of this material as an electrolyte for solid oxide fuel cells (SOFC) in the temperature range of $700-1000^{\circ}C$ and in $0.21{\leq}pO_2/atm{\leq}10^{-23}$. A Hebb-Wagner polarization experimental cell was optimally manufactured; here we discuss typical problems associated with making cells. The partial conductivities due to electrons and holes for 8YSZ, which is known as a superior oxygen conductor, were obtained using I-V characteristics based on the Hebb-Wagner polarization method. Activation energies for holes and electrons are $3.99{\pm}0.17eV$ and $1.70{\pm}0.06eV$ respectively. Further, we calculated the oxygen ion conductivity with electron, hole, and total conductivity, which was obtained by DC four probe conductivity measurements. The oxygen ion conductivity was dependent on the temperature; the activation energy was $0.80{\pm}0.10eV$. The electrolyte domain was determined from the top limit, bottom limit, and boundary (p=n) of the oxygen partial pressure. As a result, the electrolyte domain was widely presented in an extensive range of oxygen partial pressures and temperatures.