Browse > Article
http://dx.doi.org/10.7316/KHNES.2013.24.1.061

Effect of Iodine-coated Bipolar Plates on the Performance of a Polymer Exchange Membrane (PEM) Fuel Cell  

Kim, Taeeon (Intelligence Nano Convergence Material Team, The Korea Institute of Ceramic Eng. and Tech.)
Juon, Some (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.)
Cho, Kwangyeon (Intelligence Nano Convergence Material Team, The Korea Institute of Ceramic Eng. and Tech.)
Shul, Yonggun (Dep. of Chemical and biomolecular Eng. and Grad. Program of New energy and battery Eng., Yonsei Univ.)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.24, no.1, 2013 , pp. 61-69 More about this Journal
Abstract
Polymer exchange membrane (PEM) fuel cells have multifunctional properties, and bipolar plates are one of the key components in these fuel cells. Generally, a bipolar plate has a gas flow path for hydrogen and oxygen liberated at the anode and cathode, respectively. In this study, the influence of iodine applied to a bipolar plate was investigated. Accordingly, we compared bipolar plates with and without iodine coating, and the performances of these plates were evaluated under operating conditions of $75^{\circ}C$ and 100% relative humidity. The membrane and platinum-carbon layer were affected by the iodine-coated bipolar plate. Bipolar plates coated with iodine and a membrane-electrode assembly (MEA) were investigated by electron probe microanalyzer (EPMA) and energy-dispersive x-ray spectroscopy (EDS) analysis. Polarization curves showed that the performance of a coated bipolar plate is approximately 19% higher than that of a plate without coating. Moreover, electrochemical impedance spectroscopy (EIS) analysis revealed that charge transfer resistance and membrane resistance decreased with the influence of the iodine charge transfer complex for fuel cells on the performance.
Keywords
PEMFC; Bipolar plate; Iodine; Electrochemical impedance spectroscopy analysis; Nafion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. L. Perry, and T. F. Fuller, "A Historical Perspective of Fuel Cell Technology in the 20th Century", J. Electrochem. Soc., Vol. 419, No. 7, 2002, pp. S59-S67.
2 B. C. H. Steele, and A. Heinzel, "Materials for fuel cell technologies", Nature, Vol. 414, 2001, pp. 345-352.   DOI   ScienceOn
3 S. J. Lee, S. Mukergee, J. McBreen, Y. W. Rho, Y. T. Kho, and T. H. Lee, "Effects of Nafion impregnation on performances of PEMFC electrodes", Electrochimica Acta, Vol. 43, No. 24, 1998, pp. 3693-3701.   DOI   ScienceOn
4 S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrogen Energy, Vol. 35, 2010, pp. 9349-9384.   DOI   ScienceOn
5 L. Zhang, S. R. Chae, Z. Hendren, J. S. Park, and M. R. Wiesner, "Recent advances in proton exchange membranes for fuel cell application", Chem. Eng. J., Vol. 204-206, 2012, pp. 87-97.   DOI
6 J. K. Lee, H. Y. Ha, S. A. Hong, H. S. Chun, T. W. Lim, and I. H. Oh, "Effects of Preparation Method of Catalytic Layer on the Performance of Polymer Electrolyte Membrane Fuel Cells", J. Kor. Inst. Chem. Eng., Vol. 39, No. 1, 2001, pp. 109-115.
7 F. A. de Bruijn, V.A.T. Dam, and G. J. M. Janssen, "Review: Durability and Degradation Issues of PEM Fuel Cell Components", Fuel Cell, Vol. 8, No. 1, 2008, pp. 3-22.   DOI   ScienceOn
8 H. Li, H. Wang, W. Qian, S. Zhang, S. Wessel, T. T. H. Cheng, J. Shen, and S. Wu, "Chloride contamination effects on proton exchange membrane fuel cell performance and durability", J. Power Sources, Vol. 196, 2011, pp. 6249-6255.   DOI   ScienceOn
9 W. M. Yan, H. S. Chu, Y. L. Liu, F. Chen, and J. H. Jang, "Effects of chlorides on the performance of proton exchange membrane fuel cells", Int. J. Hydrogen Energy, Vol. 36, No. 36, 2011, pp. 5435-5441.   DOI   ScienceOn
10 C. W. Forsberg, "Hydrogen, nuclear energy, and the advanced high-temperature reactor", Int. J. Hydrogen Energy, Vol. 28, 2003, pp. 1073-1081.
11 J. E. Funk, "Thermochemical hydrogen production: past and present", Int. J. Hydrogen Energy, Vol. 26, 2001, pp. 185-190.   DOI   ScienceOn
12 B. P. Dailey, "Halogen Bond Character in the Alkyl Halides", J. Chem. Phys, Vol. 33, No. 6, 1960, pp. 1641-1643.   DOI
13 A. C. Fernandes, and E. A. Ticianelli, "A performance and degradation study of Nafion 212 membrane for proton exchange membrane fuel cell", J. Power Sources, Vol. 193, 2009, pp. 547-554.   DOI   ScienceOn
14 P. J. Kropp, "Photobehavior of Alkyl Halides in Solution: Radical, Carbocation, and Carbene Intermediates", Acc. Chem. Res, Vol. 17, 1984, pp. 131-137.   DOI
15 J. Peron, A. Mani, X. Zhao, D. Edwards, M. Adachi, T. Soboleva, Z. Shi, Z. Xie, T. Navessin, and S. Holdcroft, "Properties of Nafion NR-211 membranes for PEMFCs", J. Membr. Sci, Vol. 356, 2010, pp. 44-51.   DOI   ScienceOn
16 W. Liu, Y. Xie, J. Liu, Xiao. Jie, J. Gu, and Z. Zou, "Experimental study of proton exchange membrane fuel cells using Nafion 212 and Nafion 211 for portable application at ambient pressure and temperature conditions", Int. J. Hydrogen Energy, Vol. 37, 2012, pp. 4673-4677.   DOI   ScienceOn
17 S. Bhatt, B. Gupta, V. K. Sethi, and M. Pandey, "Polymer Exchange Membrane (PEM) Fuel Cell: A Review", Int. J. Curr. Eng. Tech., Vol. 2, No. 1, 2012, pp. 219-226.
18 T. E. Springer, T. A. Zawodzinski, M. S. Wilson, and S. gottesfeld, "Characterization of Polymer Electrolyte Fuel Cell Using AC Impedance Spectroscopy", J. Electrochem. Soc., Vol. 143, No. 2, 1996, pp. 587-599.   DOI
19 Y. Okamoto, and W. Brenner, "Organic Semiconductor", Reinhold Publ. Corp., New York, 1964.
20 H. Akamatsu, H. Inokuchi, and Y. Matsunaga, "Electrical Conductivity of the Perylene-Bromine Complex", Nature, Vol. 173, No. 4395, 1954, pp. 168-169.   DOI
21 S. Sun, H. Yu, J. Hou, Z. Shao, B. Yi, P. Ming, and Z. Hou, "Catalytic hydrogen/oxygen reaction assisted the proton exchange membrane fuel cell (PEMFC) startup at subzero temperature", J. Power Sources, Vol. 177, 2008, pp. 137-141.   DOI   ScienceOn
22 V. Ramani, H. R. Kunz, and J. M. Fenton, "Stabilized composite membranes and membrane electrode assemblies for elevated temperature/low relative humidity PEFC operation", J. Power Sources, Vol. 152, 2005, pp. 182-188.   DOI   ScienceOn
23 A. E. Thomas and A. Wieckowski, "Surface diffusion limited desorption of iodine on a platinum electrode", J. Electroanal. Chem., Vol. 399, 1995, pp. 207-212.   DOI   ScienceOn
24 V. Ramani, H. R. Kunz, and J. M. Fenton, "Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation", J. Membr. Sci., Vol. 232, 2004, pp. 31-34.   DOI   ScienceOn