• Title/Summary/Keyword: Electron Probe

Search Result 731, Processing Time 0.034 seconds

Development of Nitric Acid Free Desmut Solution for the Aluminum Alloy in Alkaline Etching and Acid Desmut Processes (Aluminum 합금소재의 알칼리에칭 공정으로 발생한 Smut 제거를 위한 무질산 혼합산용액 개발)

  • Choo, Soo-Tae;Choi, Sang Kyo
    • Clean Technology
    • /
    • v.9 no.2
    • /
    • pp.57-61
    • /
    • 2003
  • A novel nitric acid-free desmut solution has been developed to remove smut, which is produced from a NaOH etching, on the surface of aluminum alloy metal in metal surface treatment processes. Comparing with the performance of 5% $HNO_3$ desmut solution, the mixed acid solution containing 2% $H_2O_2$, 0.5% HF, and 10% $H_2SO_4$ shows the same effect of smut removal for aluminum alloy samples of A16061 and A15052. To examine the surface alterations of the aluminum samples, in addition, the surface analysis is carried out with scanning electron microscopy (SEM) and electron probe microanalysis (EPMA).

  • PDF

Analysis of PVDF Coating Properties with Addition of Hydrophobically Modified Fumed Silica

  • Lee, Nam Kyu;Kim, Young Hoon;Im, Tae Gyu;Lee, Dong Uk;Shon, MinYoung;Moon, Myung Jun
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.232-242
    • /
    • 2019
  • In this study, hydrophobically modified fumed silica was added to the PVDF coating to improve corrosion protection performance. Two types of silane modifiers, trimethylchlorosilane (TMCS) and hexamethyldisilazane (HMDZ), were used for hydrophobic modification of the fumed silica. The composition of modified fumed silica was analyzed by Fourier transform infrared, X-ray photoelectron spectroscopy, and elemental analysis. The dispersion of modified fumed silica in the PVDF coating was observed by the transmission electron microscopy, and the hydrophobicity of PVDF coating was analyzed by the water contact angle. Surface properties were examined by the field emission scanning electron microscopy and scanning probe microscopy. Potentiodynamic polarization was conducted to confirm corrosion protection performance of PVDF coating in terms of hydrophobically-modified fumed silica contents. As a result, the average surface roughness and the water contact angle of the PVDF coating increased with modifier contents. The results of the potentiodynamic polarization test showed an increase of the Ecorr values with increase of the hydrophobicity of PVDF coating. Thus, it clearly indicates that the corrosion protection performance of PVDF coating improved with the addition of the hydrophobic-modified fumed silica that prevents the penetration of moisture into the PVDF coating.

New Design and Synthesis of Donor-Acceptor units by Introducing Boron Based to Non-Boron based Semiconductor for high Voc OPV

  • Ryu, Ka Yeon;Cho, Kyuwan;Kim, Won-Suk;Kim, Kyungkon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.432.2-432.2
    • /
    • 2016
  • A new A-D-A type (Acceptor-Donor-Acceptor) conjugated based on pyridine-borane complex (Donor), non-boron fluorine (Donor) and 2,5-bis(alkyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (DPP) (Acceptor) were designed and synthesized via Pd-catalyzed Suzuki cross-coupling reaction. The synthesized boron based complex exhibited high electron affinity, which indicates deep HOMO energy levels and good visible absorption led to their use as donors in BHJ (bulk heterojunction) solar cells. Inverted devices were fabricated, reaching open-circuit voltage as high as 0.91eV. To probe structure-property relationship and search for design principle, we have synthesized pyridine-boron based electron donating small molecules. In this study, we report a new synthetic approach, molecular structure, charge carrier mobility and morphology of blended film and their correlation with the photovoltaic J-V characteristics in details.

  • PDF

Layer Controlled Synthesis of Graphene using Two-Step Growth Process

  • Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.221.2-221.2
    • /
    • 2015
  • Graphene is very interesting 2 dimensional material providing unique properties. Especially, graphene has been investigated as a stretchable and transparent conductor due to its high mobility, high optical transmittance, and outstanding mechanical properties. On the contrary, high sheet resistance of extremely thin monolayer graphene limits its application. Artificially stacked multilayer graphene is used to decrease its sheet resistance and has shown improved results. However, stacked multilayer graphene requires repetitive and unnecessary transfer processes. Recently, growth of multilayer graphene has been investigated using a chemical vapor deposition (CVD) method but the layer controlled synthesis of multilayer graphene has shown challenges. In this paper, we demonstrate controlled growth of multilayer graphene using a two-step process with multi heating zone low pressure CVD. The produced graphene samples are characterized by optical microscope (OM) and scanning electron microscopy (SEM). Raman spectroscopy is used to distinguish a number of layers in the multilayer graphene. Its optical and electrical properties are also analyzed by UV-Vis spectrophotometer and probe station, respectively. Atomic resolution images of graphene layers are observed by high resolution transmission electron microscopy (HRTEM).

  • PDF

Preliminary Analysis of Several Storm Events by using the ECT data onboard Van Allen Probes

  • Choi, Eunjin;Hwang, Junga;Kim, Hang-Pyo;Kim, Kyoung-Chan;Park, Young-Deuk;Min, Kyoung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.95.2-95.2
    • /
    • 2013
  • The Van Allen Probes were designed to study the Earth's radiation belts on various scales of space and time. The identical two spacecrafts going nearly eccentric orbits lap each other several times over the course of the mission and each probe carries five instrument suites to address the science objectives on the radiation belt. Since Van Allen Probes launched on August 30, 2012, the probes detecte several storm events up to now. To understand the particle acceleration and loss mechanism in the radiation belt, we first focus on the energetic electrons' dynamics detected by ECT (Energetic Particle, Composition, and Thermal Plasma Suite). ECT measures near-Earth space's radiation particles covering the full electron and ion spectra from ~ eV to 10's of MeV with sufficient energy resolution. In this paper, we present the preliminary results of the recent several storm events using electron data from ECT(MagEIS and REPT).

  • PDF

The Surface Modification and Low Cycle Fatigue Behavior of N+ion Implantated 7050Al Alloy (질소 이온 주입시킨 7050Al합금의 표면 미세구조 변화와 저주기 피로거동)

  • Lee, C.W.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.307-317
    • /
    • 1994
  • The surf ace microstructure modification by $N^+$ ion implantation into 7050Al alloy and its low cycle fatigue behavior were investigated. Ion implantation method is to physically implant accelerated ions to the surface of a substrate. High dose of nitrogen($5{\times}10^{17}ions/cm^2$) were implanted into 7050Al alloy using current density of accellerating voltage of 100KeV. The implanted layers were characterized by Electron Probe-Micro Analysis(EPMA), Auger Elecron Spectroscopy(AES), X-Ray Diffraction(XRD), X-Ray Photoelectron Spectroscopy(XPS), and Transmission Electron Microscopy(TEM). The experimental results were compared with computer simulation data. It was shown that AlN was formed to 4500 ${\AA}$ deep. The low cycle fatigue life of the $N^4$ion modified material was prolonged by about three times the unimplanted one. The improved low cycle fatigue life was attributed to the formation of AlN and the damaged region on the surface by $N^+$ ion implantation.

  • PDF

Characterization of tantalum silicide films formed by composite sputtering and rapid thermal annealing

  • Cho, Hyun-Choon;Paek, Su-Hyon;Choi, Jin-Seok;Mah, Jae-Pyung;Ko, Chul-Gi;Kim, Dong-Won
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.27-34
    • /
    • 1992
  • Tantalum silicide films are prepared from a composite $TaSi_{28}$ target source and subjected to rapid thermal annealing($500-1100^{\circ}C$, 20sec) in Ar ambient. The formation and the properties of tantalum silicides have been investigated by using 4-point probe, x-ray diffraction, scanning electron microscope(SEM), Auger electron spectroscope(AES), and ${\alpha}$-step. It has been found that the sample annealed above $700^{\circ}C$ forms a polycrystalline $TaSi_2$ phase, and grains grow in granular form regardless of the kind of substrates. The mechanism of the formation of tantalum silicide is the nucleation and growth by Ta-Si short range reaction. The tantalum silicide film has the relatively low resistivity($70-72.5{\mu}{\Omega}-cm$) and smooth surface roughness.

  • PDF

Effect of Hot Isostatic Pressing on the Microstructure and Properties of Kinetic Sprayed Nb Coating Material (Kinetic Spray 공정으로 제조된 Nb 코팅 소재의 미세조직 및 물성에 미치는 열간 등압 성형(HIP)의 영향)

  • Lee, Ji-Hye;Yang, Sangsun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Niobium is one of the most important and rarest metals, and is used in the electronic and energy industries. However, it's extremely high melting point and oxygen affinity limits the manufacture of Nb coating materials. Here, a Nb coating material is manufactured using a kinetic spray process followed by hot isotactic pressing to improve its properties. OM (optical microscope), XRD (X-ray diffraction), SEM (scanning electron microscopy), and Vickers hardness and EPMA (electron probe micro analyzer) tests are employed to investigate the macroscopic properties of the manufactured Nb materials. The powder used to manufacture the material has angular-shaped particles with an average particle size of $23.8{\mu}m$. The porosity and hardness of the manufactured Nb material are 0.18% and 221 Hv, respectively. Additional HIP is applied to the manufactured Nb material for 4 h under an Ar atmosphere after which the porosity decreases to 0.08% and the hardness increases to 253 Hv. Phase analysis after the HIP shows the presence of only pure Nb. The study also discusses the possibility of using the manufactured Nb material as a sputtering target.

Investigation of natural solution effect in electrical conductivity of PANI-CeO2 nanocomposites

  • Shafiee, Mohammad Reza Mohammad;Sattari, Ahmad;Kargar, Mahboubeh;Ghashang, Majid
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • A green biosynthesis method is described for the preparation of Polyaniline (PANI)-cerium dioxide ($CeO_2$) nanocomposites in different media via in-situ oxidative polymerization procedure. The effect of various media including use of HCl, Lemon Juice, Beverage, White Vinegar, Verjuice and Apple vinegar extracts on the particles size, morphology as well as the conductivity of $PANI-CeO_2$ nanocomposites was investigated. The electron-withdrawing feature of $CeO_2$ increases doping level of PANI and enhances electron delocalization. These cause a significantly blue shift of C = C stretching band of quinoid from $1570cm^{-1}$ to $1585cm^{-1}$. The optical properties of the pure material and polymeric nanocomposites as well as their interfacial interaction in nanocomposite structures analyzed by UV-visible spectroscopy. The DC electrical conductivity (${\sigma}$) of as-prepared HCl doped PANI and a $PANI-CeO_2$ nanocomposite measured by a four-probe method at room temperature was studied.

Effect of Added B4C on the Mechanical Properties of WC/Ni-Si Hardmetal (WC/Ni-Si 초경합금의 기계적 성질에 미치는 B4C의 영향)

  • Lee, Gil-Geun;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.366-370
    • /
    • 2013
  • The effects of $B_4C$ on the mechanical properties of WC/Ni-Si hardmetal were analyzed using sintered bodies comprising WC(70-x wt.%), Ni (28.5 wt.%), Si (1.5 wt.%), and $B_4C$ (x wt.%), where $$0{\leq_-}x{\leq_-}1.2$$ wt.%. Samples were prepared by a combination of mechanical milling and liquid-phase sintering. Phase and microstructure characterizations were conducted using X-ray diffractometry, scanning electron microscopy, and electron probe X-ray micro analysis. The mechanical properties of the sintered bodies were evaluated by measuring their hardness and transverse rupture strength. The addition of $B_4C$ improved the sinterability of the hardmetals. With increasing $B_4C$ content, their hardness increased, but their transverse rupture strength decreased. The changes of sinterability and mechanical properties were attributed to the alloying reaction between $B_4C$ and the binder metal (Ni, Si).