• Title/Summary/Keyword: Electron Dose Rate

Search Result 130, Processing Time 0.025 seconds

Enhancing Effect of Organic Substances on Hydroxyl Radical Generation During Ozonation of Water: Stopped-Flow ESR Technique

  • Han, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1907-1910
    • /
    • 2004
  • Generation of hydroxyl radical, one of their major active species in ozonation of water was directly observed with spin-trapping/electron spin resonance (ESR) technique using 5,5-dimethyl-pyrrolidine-1-oxyl (DMPO) as a spin-trapping reagent. Hydroxyl radical was trapped with DMPO as a stable radical, DMPO-OH. 80 mM of ozone produced $1.08{\times}10^{-6}$M of DMPO-OH, indicating that 1.4% of ${\cdot}$OH is trapped with DMPO if ${\cdot}$OH is produced stoichiometrically from ozone. Humic acid suppressed DMPO-OH generation in a dose-dependent manner. Generation rate of DMPO-OH was determined with ESR/stopped-flow measurement. Phenol derivatives increased the amount and generation rate of DMPO-OH, indicating that phenol derivatives enhance·OH generation during ozonation of water.

AN ELECTRON MICROSCOPIC STUDY ON THE COBALT-60 IRRADIATION EFFECTS ON THE SALIVARY GLAND OF THE WHITE RAT (Cobalt-60 방사선조사가 백서의 타액선에 미치는 영향에 관한 전자현미경적 연구)

  • Park Chang Seo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.15 no.1
    • /
    • pp.27-40
    • /
    • 1985
  • This study was undertaken to observe the histopathologic changes in salivary gland of the white rats when exposed to megavoltage fractionated dose of cobalt-60 irradiation and 78 female white rats, weighing approximately 180gm, were divided into control and 3 experimental groups. Irradiation on experimental groups was delivered by using 6000 curies MeV ALCYON cobalt-60 teletherapy unit with exposure rate 183 rads per minute, in source skin distance 80cm, 600 rads every 3 days. In experimental groups, Group Ⅰwas irradiated of total dose 1200 rads for a period of 6 days, Group Ⅱ was irradiated of total dose 2400 rads for a period of 12 days and Group Ⅲ was irradiated of total dose of 4800 rads for a period of 24 days. The animals were sacrificed serially at 3 hours, 6 hours, 10 hours, 1st day, 4th day, 7th day after each completion of irradiation exposure. At sacrifice, salivary glands were excised and examined microscopically and electromicroscopically. The results were as follows: 1. The acinar cells of parotid and submaxillary gland showed damage varied with dose, 1200 rads resulted in very mild injury while 4800 rads caused most extensive injury. 2. The acinar cells of parotid and submandibular gland showed similar ultrastructural alterations, appeared as pleomorphic nucleus, decreased numbers and pleomorphism of secretory granules, distention of rough endplasmic reticulum, expansion and pallor appearance of mitochondria, and hypertrophy of Golgi complex. 3. Parotid serous cells were the most sensitive components, displaying morphological alterations of radiation damage as early as 3 hours, followed by submandibular seromucinous cells and secretory tubular cells. 4. The mucous cells of sublingual gland, as well as the whole ductal lining cells of each salivary gland, displayed no significant alterations. No evidence of microvascular injury through whole experimental groups indicated that microvascular impairment does not contribute to early salivary gland injury.

  • PDF

Measurement of Electron Beam Output for the Prototype Compact Linac (콤팩트 전자 선형가속기 시작품의 출력측정에 관한 연구)

  • Kim, Sung-Woo;Kang, Sang Koo;Rhee, Dong Joo;Lim, Heuijin;Lee, Manwoo;Yi, Jungyu;Lee, Mujin;Yang, Kwangmo;Ro, Tae Ik;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The C-band compact linear accelerator (linac) is being developed at Dongnam Institute of radiological & Medical Sciences (DIRAMS) for medical and industrial applications. This paper was focused on the output measurement of the electron beam generated from the prototype electron linac. The dose rate was measured in unit of cGy/min per unit pulse frequency according to the IAEA TRS-398 protocol. Exradin-A10 Markus type plane parallel chamber used for the measurement was calibrated in terms of dose to water at the reference depth in water. The beam quality index ($R_{50}$) was determined by the radiochromic film with a solid water phantom approximately due to low energy electrons. As a result, the determined electron beam output was $17.0cGy/(min{\cdot}Hz$. The results were used to monitor the accelerator performance during the development procedure.

Efficacy and Accuracy of Patient Specific Customize Bolus Using a 3-Dimensional Printer for Electron Beam Therapy (전자선 빔 치료 시 삼차원프린터를 이용하여 제작한 환자맞춤형 볼루스의 유용성 및 선량 정확도 평가)

  • Choi, Woo Keun;Chun, Jun Chul;Ju, Sang Gyu;Min, Byung Jun;Park, Su Yeon;Nam, Hee Rim;Hong, Chae-Seon;Kim, MinKyu;Koo, Bum Yong;Lim, Do Hoon
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.64-71
    • /
    • 2016
  • We develop a manufacture procedure for the production of a patient specific customized bolus (PSCB) using a 3D printer (3DP). The dosimetric accuracy of the 3D-PSCB is evaluated for electron beam therapy. In order to cover the required planning target volume (PTV), we select the proper electron beam energy and the field size through initial dose calculation using a treatment planning system. The PSCB is delineated based on the initial dose distribution. The dose calculation is repeated after applying the PSCB. We iteratively fine-tune the PSCB shape until the plan quality is sufficient to meet the required clinical criteria. Then the contour data of the PSCB is transferred to an in-house conversion software through the DICOMRT protocol. This contour data is converted into the 3DP data format, STereoLithography data format and then printed using a 3DP. Two virtual patients, having concave and convex shapes, were generated with a virtual PTV and an organ at risk (OAR). Then, two corresponding electron treatment plans with and without a PSCB were generated to evaluate the dosimetric effect of the PSCB. The dosimetric characteristics and dose volume histograms for the PTV and OAR are compared in both plans. Film dosimetry is performed to verify the dosimetric accuracy of the 3D-PSCB. The calculated planar dose distribution is compared to that measured using film dosimetry taken from the beam central axis. We compare the percent depth dose curve and gamma analysis (the dose difference is 3%, and the distance to agreement is 3 mm) results. No significant difference in the PTV dose is observed in the plan with the PSCB compared to that without the PSCB. The maximum, minimum, and mean doses of the OAR in the plan with the PSCB were significantly reduced by 9.7%, 36.6%, and 28.3%, respectively, compared to those in the plan without the PSCB. By applying the PSCB, the OAR volumes receiving 90% and 80% of the prescribed dose were reduced from $14.40cm^3$ to $0.1cm^3$ and from $42.6cm^3$ to $3.7cm^3$, respectively, in comparison to that without using the PSCB. The gamma pass rates of the concave and convex plans were 95% and 98%, respectively. A new procedure of the fabrication of a PSCB is developed using a 3DP. We confirm the usefulness and dosimetric accuracy of the 3D-PSCB for the clinical use. Thus, rapidly advancing 3DP technology is able to ease and expand clinical implementation of the PSCB.

Preliminary Application of Synthetic Computed Tomography Image Generation from Magnetic Resonance Image Using Deep-Learning in Breast Cancer Patients

  • Jeon, Wan;An, Hyun Joon;Kim, Jung-in;Park, Jong Min;Kim, Hyoungnyoun;Shin, Kyung Hwan;Chie, Eui Kyu
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.4
    • /
    • pp.149-155
    • /
    • 2019
  • Background: Magnetic resonance (MR) image guided radiation therapy system, enables real time MR guided radiotherapy (RT) without additional radiation exposure to patients during treatment. However, MR image lacks electron density information required for dose calculation. Image fusion algorithm with deformable registration between MR and computed tomography (CT) was developed to solve this issue. However, delivered dose may be different due to volumetric changes during image registration process. In this respect, synthetic CT generated from the MR image would provide more accurate information required for the real time RT. Materials and Methods: We analyzed 1,209 MR images from 16 patients who underwent MR guided RT. Structures were divided into five tissue types, air, lung, fat, soft tissue and bone, according to the Hounsfield unit of deformed CT. Using the deep learning model (U-NET model), synthetic CT images were generated from the MR images acquired during RT. This synthetic CT images were compared to deformed CT generated using the deformable registration. Pixel-to-pixel match was conducted to compare the synthetic and deformed CT images. Results and Discussion: In two test image sets, average pixel match rate per section was more than 70% (67.9 to 80.3% and 60.1 to 79%; synthetic CT pixel/deformed planning CT pixel) and the average pixel match rate in the entire patient image set was 69.8%. Conclusion: The synthetic CT generated from the MR images were comparable to deformed CT, suggesting possible use for real time RT. Deep learning model may further improve match rate of synthetic CT with larger MR imaging data.

The Effect of Gamma Irradiation on PLGA and Release Behavior of BCNU from PLGA Wafer

  • Lee, Jin-Soo;Chae, Gang-Soo;Gilson Khang;Kim, Moon-Suk;Cho, Sun-Hang;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.352-356
    • /
    • 2003
  • The objectives of this study were to investigate the influence of gamma irradiation for sterilization on poly(D,L-lactide-co-glycolide) (PLGA) with different molecular weight and the effect of gamma irradiation on the release behavior of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine) from PLGA wafer with various irradiation doses. The effect of gamma irradiation on PLGA was evaluated by gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and electron paramagnetic resonance (EPR). The weight average molecular weight (M$_{w}$) and glass transition temperature (T$_{g}$) of PLGA decreased after gamma irradiation. The extent of M$_{w}$ reduction was dependent on irradiation dose and PLGA molecular weight. Using EPR spectroscopy, we successfully detected gamma irradiation induced free radicals in PLGA. The gamma irradiation increased the release rate of BCNU from PLGA wafer at applied irradiation doses except 2.5 Mrad of irradiation dose in this study.study.

Comparison and evaluation between 3D-bolus and step-bolus, the assistive radiotherapy devices for the patients who had undergone modified radical mastectomy surgery (변형 근치적 유방절제술 시행 환자의 방사선 치료 시 3D-bolus와 step-bolus의 비교 평가)

  • Jang, Wonseok;Park, Kwangwoo;Shin, Dongbong;Kim, Jongdae;Kim, Seijoon;Ha, Jinsook;Jeon, Mijin;Cho, Yoonjin;Jung, Inho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • Purpose : This study aimed to compare and evaluate between the efficiency of two respective devices, 3D-bolus and step-bolus when the devices were used for the treatment of patients whose chest walls were required to undergo the electron beam therapy after the surgical procedure of modified radical mastectomy, MRM. Materials and Methods : The treatment plan of reverse hockey stick method, using the photon beam and electron beam, had been set for six breast cancer patients and these 6 breast cancer patients were selected to be the subjects for this study. The prescribed dose of electron beam for anterior chest wall was set to be 180 cGy per treatment and both the 3D-bolus, produced using 3D printer(CubeX, 3D systems, USA) and the self-made conventional step-bolus were used respectively. The surface dose under 3D-bolus and step-bolus was measured at 5 measurement spots of iso-center, lateral, medial, superior and inferior point, using GAFCHROMIC EBT3 film (International specialty products, USA) and the measured value of dose at 5 spots was compared and analyzed. Also the respective treatment plan was devised, considering the adoption of 3D-bolus and stepbolus and the separate treatment results were compared to each other. Results : The average surface dose was 179.17 cGy when the device of 3D-bolus was adopted and 172.02 cGy when step-bolus was adopted. The average error rate against the prescribed dose of 180 cGy was -(minus) 0.47% when the device of 3D-bolus was adopted and it was -(minus) 4.43% when step-bolus was adopted. It was turned out that the maximum error rate at the point of iso-center was 2.69%, in case of 3D-bolus adoption and it was 5,54% in case of step-bolus adoption. The maximum discrepancy in terms of treatment accuracy was revealed to be about 6% when step-bolus was adopted and to be about 3% when 3D-bolus was adopted. The difference in average target dose on chest wall between 3D-bolus treatment plan and step-bolus treatment plan was shown to be insignificant as the difference was only 0.3%. However, to mention the average prescribed dose for the part of lung and heart, that of 3D-bolus was decreased by 11% for lung and by 8% for heart, compared to that of step-bolus. Conclusion : It was confirmed through this research that the dose uniformity could be improved better through the device of 3D-bolus than through the device of step-bolus, as the device of 3D-bolus, produced in consideration of the contact condition of skin surface of chest wall, could be attached to patients' skin more nicely and the thickness of chest wall can be guaranteed more accurately by the device of 3D-bolus. It is considered that 3D-bolus device can be highly appreciated clinically because 3D-bolus reduces the dose on the adjacent organs and make the normal tissues protected, while that gives no reduction of dose on chest wall.

  • PDF

Effects of ionizing and ultraviolet radiation on microbial mutation and DNA damage (전리방사선 및 자외선의 미생물 돌연변이와 DNA 손상에 대한 영향)

  • Nam, Ji-Hyun;Shin, Ji-Hye;Lee, Jung-Yun;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.20-28
    • /
    • 2017
  • Physical sterilization methods using ultraviolet radiation and ionizing radiation such as gamma ray and electron beam are applied in various industry fields due to disinfection effects and economic efficiency but may also cause microbial mutation. In this research, Salmonella enterica and Escherichia coli strains were treated with ionizing and ultraviolet radiation and their survival rate, mutation rate, and DNA damage were studied to evaluate the genetic safety. The survival rate of the strains decreased drastically as the irradiation dose of ultraviolet ray, gamma ray, and electron beam increased, and over 90% of the strain was exterminated at a dosage of $0.40{\sim}25.06mJ/cm^3$, 0.11~0.22 kGy, 0.14~0.53 kGy respectively. In SOS / umu-test, genotoxicity causing DNA damage was identified in all samples. In Ames test, back-mutation rate increased to $3.82{\times}10^{-4}$ and $9.84{\times}10^{-6}$ respectively when exposed to ultraviolet ray and gamma ray. At exposure to ultraviolet ray, gamma ray, and electron beam with dosage of over 99.99% extinction rate of S. enterica TA100, back-mutation rate increased 347 times, 220 times, 0.6 times respectively to the spontaneous back-mutation rate. Rifampicin resistance mutation rate of E. coli CSH100 exposed to ultraviolet ray, gamma ray, and electron beam was $2.46{\times}10^{-6}$, $1.66{\times}10^{-6}$, $4.12{\times}10^{-7}$ respectively. Therefore, gamma radiation is effective in microorganism control from the perspective of disinfection and electron beam has the advantage of sterilizing with little DNA damage and bacterial mutation.

Fine Structural Modification of Mouse Ovarian Tissue by Irradiation of 6 MeV LINAC Radiation (6 MeV LINAC 방사선 조사에 의한 생쥐 난소조직의 미세구조 변화)

  • Yoon, Chul-Ho;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.33 no.2
    • /
    • pp.117-130
    • /
    • 2003
  • This research investigates the fine structural as well as the morphological changes of the mouse ovarian tissue after irradiation of various dose rates of 6 MeV LINAC radiation. The normal structure of the ovarian tissue is consisted of various stages of follicles including primordial and growing follicles, and ovarian stromal connectives. When we observed the ovarian tissues irradiated with a dose rate of 200 cGy/min using light and electron microscopes, granular cells in growing follicles are in irregular shape unlike normal follicles. Small segments of cells scattered in follicular antrum among granular cells. We could observe neutrophils and macrophages around the segments, which means the cells already got in the process of decease owing to the effects radiation. With coincident to the increase of the dose rate of x-ray irradiation as 400 or 600 cGy/min, the mature follicles appeared as an irregular form and the granular cells surrounding oocyte also deformed comparing to their normal counterparts. The granulosa cells within mature follicle are already occurred necrotic change and apoptosis. The nuclei in some cells got so fragmented that the segments formed the shape of a horseshoe or scattered in small and condensed pieces. All the cells at a granular layer irradiated with a dose rate of 600 cGy/min show typical characteristics of apoptosis. The neutrophils involved in inflammatory reaction appear evidently in follicular antrum of growing follicles, and macrophage scattered with residual and apoptotic bodies.

Identification Characteristics of Gamma-Irradiated Dried Fishery and Mollusks Products Using Electron Spin Resonance Spectroscopy (ESR 분석법에 의한 감마선 조사 처리 건조어류 및 연체류의 조사 여부 판별 특성)

  • Kim, Moon-Young;Kim, Gui-Ran;Kim, Dong-Sul;Jang, Hong Keun;Kwon, Joong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.725-731
    • /
    • 2015
  • Electron spin resonance (ESR) analysis was conducted for eight different kinds of dried seafood products to investigate their gamma-irradiation status. The specimens consisted of 0~10 kGy-irradiated bones, which included five dried fishes (plaice, hairtail, saury, herring, and dried filefish) and three dried mollusks (beca squid, dried squid, and mitra squid) without flesh or marrow. ESR analysis showed that irradiated specimens exhibited typical asymmetric signals as compared to non-irradiated specimens. ESR signal intensities of all dried fishery samples significantly increased depending on irradiation dose, whereas hydroxyapetite radicals clearly appeared in irradiated plaice, saury, and hairtail. In comparing hydroxyapatite (HA) ratio, irradiated hairtail showed a greater hydroxyapatite-radical generation rate than plaice and saury, and the HA ratio significantly increased with elevated irradiation dose. However, all irradiated plaice and hairtail samples, including 5 and 10 kGy-irradiated saury, showed radiation-derived radicals, whereas filefish and mollusks did not. From the results, ESR spectroscopy was found to have potential to be applied for identifying irradiated plaice, hairtail, and saury, which all contained bones.