• Title/Summary/Keyword: Electron Dose Rate

Search Result 130, Processing Time 0.035 seconds

Estimation of Electron Dose Rate using CCD Camera (CCD 카메라를 이용한 전자빔 조사량의 예측)

  • Kim, Jin-Gyu;Kim, Young-Min;Kim, Youn-Joong;Lee, Sang-Hee;Hong, Ki-Min;Oh, Sang-Ho
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.79-83
    • /
    • 2009
  • We report a useful method to estimate the electron dose rate which may be a decisive factor to characterize sample properties. Even though most mircoscopes have their own exposure meters, there are several practical concerns when such exposure meters are used to measure the electron dose rate: 1) Specimen should be avoided within the entire area of exposure meter; 2) beam current has to be always recorded whenever the operation mode is changed; 3) the electron dose rate can not be calculated for the beam current beyond the detectable range. To overcome these limitations, we suggest a useful method which utilize a CCD (charge coupled device) camera which is now a popular detector to obtain the final electron micrographs. We have evaluated the CCD sensitivity using the linear relationship between electron current on the exposure meter and counter ratio on the CCD camera which are built in KBSI-HVEM (high voltage electron microscope). Applying the new method, we obtained the CCD sensitivity which are approximately 0.039 counts/$e^-$ and 1.37 counts/$e^-$ for the Top-TV and the HV-GIF CCD cameras, respectively.

Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment - (전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 -)

  • Yang, Hae-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.

Development of a Wide Dose-Rate Range Electron Beam Irradiation System for Pre-Clinical Studies and Multi-Purpose Applications Using a Research Linear Accelerator

  • Jang, Kyoung Won;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Jung Kee;Moon, Young Min;Kim, Jin Young;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.9-19
    • /
    • 2020
  • Purpose: This study aims to develop a multi-purpose electron beam irradiation device for preclinical research and material testing using the research electron linear accelerator installed at the Dongnam Institute of Radiological and Medical Sciences. Methods: The fabricated irradiation device comprises a dual scattering foil and collimator. The correct scattering foil thickness, in terms of the energy loss and beam profile uniformity, was determined using Monte Carlo calculations. The ion-chamber and radiochromic films were used to determine the reference dose-rate (Gy/s) and beam profiles as functions of the source to surface distance (SSD) and pulse frequency. Results: The dose-rates for the electron beams were evaluated for the range from 59.16 Gy/s to 5.22 cGy/s at SSDs of 40-120 cm, by controlling the pulse frequency. Furthermore, uniform dose distributions in the electron fields were achieved up to approximately 10 cm in diameter. An empirical formula for the systematic dose-rate calculation for the irradiation system was established using the measured data. Conclusions: A wide dose-rate range electron beam irradiation device was successfully developed in this study. The pre-clinical studies relating to FLASH radiotherapy to the conventional level were made available. Additionally, material studies were made available using a quantified irradiation system. Future studies are required to improve the energy, dose-rate, and field uniformity of the irradiation system.

Initial Dosimetry of a Prototype Ultra-High Dose Rate Electron-Beam Irradiator for FLASH RT Preclinical Studies

  • Hyun Kim;Heuijin Lim;Sang Koo Kang;Sang Jin Lee;Tae Woo Kang;Seung Wook Kim;Wung-Hoa Park;Manwoo Lee;Kyoung Won Jang;Dong Hyeok Jeong
    • Progress in Medical Physics
    • /
    • v.34 no.3
    • /
    • pp.33-39
    • /
    • 2023
  • Purpose: FLASH radiotherapy (RT) using ultra-high dose rate (>40 Gy/s) radiation is being studied worldwide. However, experimental studies such as preclinical studies using small animals are difficult to perform due to the limited availability of irradiation devices and methods for generating a FLASH beam. In this paper, we report the initial dosimetry results of a prototype electron linear accelerator (LINAC)-based irradiation system to perform ultra-high dose rate (UHDR) preclinical experiments. Methods: The present study used the prototype electron LINAC developed by the Research Center of Dongnam Institute of Radiological and Medical Sciences (DIRAMS) in Korea. We investigated the beam current dependence of the depth dose to determine the optimal beam current for preclinical experiments. The dose rate in the UHDR region was measured by film dosimetry. Results: Depth dose measurements showed that the optimal beam current for preclinical experiments was approximately 33 mA, corresponding to a mean energy of 4.4 MeV. Additionally, the average dose rates of 80.4 Gy/s and 162.0 Gy/s at a source-to-phantom surface distance of 30 cm were obtained at pulse repetition frequencies of 100 Hz and 200 Hz, respectively. The dose per pulse and instantaneous dose rate were estimated to be approximately 0.80 Gy and 3.8×105 Gy/s, respectively. Conclusions: Film dosimetry verified the appropriate dose rates to perform FLASH RT preclinical studies using the developed electron-beam irradiator. However, further research on the development of innovative beam monitoring systems and stabilization of the accelerator beam is required.

High-Dose-Rate Electron-Beam Dosimetry Using an Advanced Markus Chamber with Improved Ion-Recombination Corrections

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Jang, Kyoung Won
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.145-152
    • /
    • 2020
  • Purpose: In ionization-chamber dosimetry for high-dose-rate electron beams-above 20 mGy/pulse-the ion-recombination correction methods recommended by the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) are not appropriate, because they overestimate the correction factor. In this study, we suggest a practical ion-recombination correction method, based on Boag's improved model, and apply it to reference dosimetry for electron beams of about 100 mGy/pulse generated from an electron linear accelerator (LINAC). Methods: This study employed a theoretical model of the ion-collection efficiency developed by Boag and physical parameters used by Laitano et al. We recalculated the ion-recombination correction factors using two-voltage analysis and obtained an empirical fitting formula to represent the results. Next, we compared the calculated correction factors with published results for the same calculation conditions. Additionally, we performed dosimetry for electron beams from a 6 MeV electron LINAC using an Advanced Markus® ionization chamber to determine the reference dose in water at the source-to-surface distance (SSD)=100 cm, using the correction factors obtained in this study. Results: The values of the correction factors obtained in this work are in good agreement with the published data. The measured dose-per-pulse for electron beams at the depth of maximum dose for SSD=100 cm was 115 mGy/pulse, with a standard uncertainty of 2.4%. In contrast, the ks values determined using the IAEA and AAPM methods are, respectively, 8.9% and 8.2% higher than our results. Conclusions: The new method based on Boag's improved model provides a practical method of determining the ion-recombination correction factors for high dose-per-pulse radiation beams up to about 120 mGy/pulse. This method can be applied to electron beams with even higher dose-per-pulse, subject to independent verification.

Real-time monitoring of ultra-high dose rate electron beams using bremsstrahlung photons

  • Hyun Kim;Dong Hyeok Jeong;Sang Koo Kang;Manwoo Lee;Heuijin Lim;Sang Jin Lee;Kyoung Won Jang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3417-3422
    • /
    • 2023
  • Recently, as the clinically positive biological effects of ultra-high dose rate (UHDR) radiation beams have been revealed, interest in flash radiation therapy has increased. Generally, FLASH preclinical experiments are performed using UHDR electron beams generated by linear accelerators. Real-time monitoring of UHDR beams is required to deliver the correct dose to a sample. However, it is difficult to use typical transmission-type ionization chambers for primary beam monitoring because there is no suitable electrometer capable of reading high pulsed currents, and collection efficiency is drastically reduced in pulsed radiation beams with ultra-high doses. In this study, a monitoring method using bremsstrahlung photons generated by irradiation devices and a water phantom was proposed. Charges collected in an ionization chamber located at the back of a water phantom were analyzed using the bremsstrahlung tail on electron depth dose curves obtained using radiochromic films. The dose conversion factor for converting a monitored charge into a delivered dose was determined analytically for the Advanced Markus® chamber and compared with experimentally determined values. It is anticipated that the method proposed in this study can be useful for monitoring sample doses in UHDR electron beam irradiation.

Use of Cylindrical Chambers as Substitutes for Parallel-Plate Chambers in Low-Energy Electron Dosimetry

  • Chun, Minsoo;An, Hyun Joon;Kang, Seong-Hee;Cho, Jin Dong;Park, Jong Min;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • Current dosimetry protocols recommend the use of parallel-plate chambers in electron dosimetry because the electron fluence perturbation can be effectively minimized. However, substitutable methods to calibrate and measure the electron output and energy with the widely used cylindrical chamber should be developed in case a parallel-plate chamber is unavailable. In this study, we measured the correction factors and absolute dose-to-water of electrons with energies of 4, 6, 9, 12, 16, and 20 MeV using Farmer-type and Roos chambers by varying the dose rates according to the AAPM TG-51 protocol. The ion recombination factor and absolute dose were found to be varied across the chamber types, energy, and dose rate, and these phenomena were remarkable at a low energy (4 MeV), which was in good agreement with literature. While the ion recombination factor showed a difference across chamber types of less than 0.4%, the absolute dose differences between them were largest at 4 MeV at approximately 1.5%. We therefore found that the absolute dose with respect to the dose rate was strongly influenced by ion-collection efficiency. Although more rigorous validation with other types of chambers and protocols should be performed, the outcome of the study shows the feasibility of replacing the parallel-plate chamber with the cylindrical chamber in electron dosimetry.

Electron beam scattering device for FLASH preclinical studies with 6-MeV LINAC

  • Jeong, Dong Hyeok;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Hee Chang;Lee, Kyohyun;Kim, Seung Heon;Lee, Dong Eun;Jang, Kyoung Won
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1289-1296
    • /
    • 2021
  • In this study, an electron-scattering device was fabricated to practically use the ultra-high dose rate electron beams for the FLASH preclinical research in Dongnam Institute of Radiological and Medical Sciences. The Dongnam Institute of Radiological and Medical Sciences has been involved in the investigation of linear accelerators for preclinical research and has recently implemented FLASH electron beams. To determine the geometry of the scattering device for the FLASH preclinical research with a 6-MeV linear accelerator, the Monte Carlo N-particle transport code was exploited. By employing the fabricated scattering device, the off-axis and depth dose distributions were measured with radiochromic films. The generated mean energy of electron beams via the scattering device was 4.3 MeV, and the symmetry and flatness of the off-axis dose distribution were 0.11% and 2.33%, respectively. Finally, the doses per pulse were obtained as a function of the source to surface distance (SSD); the measured dose per pulse varied from 4.0 to 0.2 Gy/pulse at an SSD range of 20-90 cm. At an SSD of 30 cm with a 100-Hz repetition rate, the dose rate was 180 Gy/s, which is sufficient for the preclinical FLASH studies.

Germination and Seedling Growth in Response to Ionizing Radiation in Creeping Bentgrass (Agrostis palustris Huds.)

  • Lee, Yong Jin;Hong, Min Jeong;Kim, Dae Yeon;Lee, Tong Geon;Kim, Dong Sub;Kim, Jin Baek;Lee, Byung Cheol;Han, Young Hwan;Seo, Yong Weon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.1
    • /
    • pp.15-21
    • /
    • 2008
  • It was previously pointed out that mutation is the ultimate source of variation. Adequate variation is needed for plant breeding if there is a limitation in natural genetic resources. When the ionizing radiation has been known to cause chromosomal and genomic alternations, it is widely used for inducing mutagenesis. The electron beam as an ionizing radiation is the principal physical mutagens that induces mutation and effectively used in plant breeding. Since dose-response relationships of electron beam in plant species are rarely known, we investigated the seed germination rate and early seedling growth of irradiated seeds of creeping bentgrass (Agrostis palustris Huds., cv Penn-A1) with various electron beam irradiating conditions (1, 1.3, 2 MeV at both 0.03 mA and 0.06 mA with dose of 100 Gy (Gray) and 0.03, 1, 1.3, 2 MeV at 0.03 mA with dose of 200 Gy, respectively) using electron accelerator at Korea Atomic Energy Research Institute. The growth parameters in terms of shoot length, primary root length, and secondary root length showed similar response between 0.06 / 1 (mA / MeV) at 100 Gy and 0.03 / 0.3 (mA / MeV) at 200 Gy. Bentgrass seed germination was mainly affected by the intensity of irradiated dose (Gray). Germination rate was lowered as the irradiated dose increased. On the other hand, early seedling growth was mainly governed not by the dose of radiation but by voltage.

Sensitivity of Lavender to Proton, Electron, and Gamma Radiation

  • Chen, Wensheng;Li, Hui;Shi, Lei;Bai, Hong Tong
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.122-133
    • /
    • 2016
  • While ion beams are widely used in plant breeding, little is known about the sensitivity of Lavandula angustifolia (lavender) to ionizing radiation. To compare the biological effects of different types of ionizing radiation on the germination and survival rates of lavender, we exposed lavender seeds to gamma rays, 3 MeV electron beams, and 1.89 MeV proton ion beams. We observed that the seed germination rate decreased with increasing dosages of all three types of ionizing radiation. The malformation rate of lavender seedlings exposed to electron beams and gamma rays increased with increasing radiation dosage. By contrast, the effect of the accelerated proton beams on the malformation rate was negatively correlated with the dosage used. The survival rate of lavender seedlings exposed to the three types of ionizing radiation decreased in a dose-dependent manner. In addition, the survival rate of seedlings irradiated with proton and electron beams decreased more slowly than did that of seedlings irradiated with gamma rays. The half-lethal dose of gamma rays, electron beams, and proton beams was determined to be 48.1 Gy, 134.3 Gy, and 277.8 Gy, respectively, and the most suitable proton-ion energy for lavender seeds in terms of penetration depth was determined to be 5 MeV. These findings provide valuable information for the breeding of lavender by radiation mutation.