• 제목/요약/키워드: Electron Donor

검색결과 370건 처리시간 0.024초

온도 변화에 따른 ZnO 박막에 대한 PL 연구 (PL Study on the ZnO Thin Film with Temperatures)

  • 조재원
    • 한국전기전자재료학회논문지
    • /
    • 제26권2호
    • /
    • pp.83-86
    • /
    • 2013
  • The optical properties of ZnO thin film have been studied using photoluminescence(PL) spectroscopy with the change of sample temperatures from 10 K to 290 K. The spectrum at 10 K showed the characteristic emission lines of ZnO which were as follows: free exciton(FX) at 3.369 eV, neutral donor-bound exciton($D^0X$) at 3.360 eV, two electron satellite(TES) at 3.332 eV, $D^0X$-1LO at 3.289 eV, and donor-acceptor pair(DAP) transiton at 3.217 eV. From the spectral evolution with temperatures, two features could be identified as temperature went higher: (1) the bound excitons changed gradually into free excitons, (2) DAP turned into free electron-acceptor transition(e,$A^0$). The PL intensity of free exciton increased with the increase of temperatures, which was accompanied by the decrease of the intensity of bound excitions and bound excition-related transitons such as TES and $D^0X$-1LO. At 80 K DAP transition disappeared, while (e,$A^0$) transition started to appear at 30 K.

황산염환원균을 이용한 폐광폐수의 중금속 제거 (Removal of Heavy Metals from Acid Mine Drainage Using Sulfate Reducing Bacteria)

  • 백병천;김광복
    • 상하수도학회지
    • /
    • 제13권2호
    • /
    • pp.47-54
    • /
    • 1999
  • SRB(Sulfate Reducing Bacteria) converts sulfate into sulfide using an organic carbon source as the electron donor. The sulfide formed precipitates the various metals present in the AMD (Acid Mine Drainage). This study is the fundamental research on heavy metal removal from AMD using SRB. Two completely mixed anaerobic reactors were operated for cultivation of SRB at the temperature of $30^{\circ}C$ and anaerobic batch reactors were used to evaluate the effects of carbon source, COD/sulfate($SO_4^=$) ratio and alkalinity on sulfate reduction rate and heavy metal removal efficiency. AMD used in this study was characterized by low pH 3.0 and 1000mg/l of sulfate and dissolved high concentration of heavy metals such as iron, cadmium, copper, zinc and lead. It was found that glucose was an organic carbon source better than acetate as the electron donor of SRB for sulfate reduction in AMD. Amount of sulfate reduction maximized at the COD(glucose)/sulfate ratio of 0.5 in the influent and then removal efficiencies of heavy metals were 97.5% of Cu, 100% of Pb, 100% of Cr, 49% of Mn, 98% of Zn, 100% Cd and 92.4% of Fe. Although sulfate reduction results in an increase in the alkalinity of the reactor, alkalinity of 1000mg/1 (as $CaCo_3$) should be should be added continuously to the anaerobic reactor in order to remove heavy metals from AMD.

  • PDF

반연속 흐름 2단 토양 컬럼에서의 사염화 에틸렌(PCE)의 혐기성 완전탈염소화 환원 생분해

  • 최정동;김영;권수열;박후원;안영호
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.131-134
    • /
    • 2005
  • Anaerobic reductive dechlorination of tetrachloroethylene(PCE) to ethylene was investigated by performing laboratory experiments using semi-continuous flow two-in-series soil columns. The columns were packed with soils obtained from TCE-contaminated site in Korea. Site ground water containing lactate(as electron donor and/or carbon source) and PCE was pumped into the soil columns. During the first operation with a period of 50 days, injected mass ratio of lactate and PCE was 620:1 and incomplete reductive dechlorination of PCE to cis-DCE was observed in the columns. However, complete dechlorination of PCE to ethylene was observed when the mass ratio increased to 5,050:1 in the second operation, suggesting that the electron donor might be limited during the first operation period. During the degradation of cis-DCE to ethylene, the concentration of hydrogen was $22{\sim}29mM$. These positive results indicate that the TCE-contaminated groundwater investigated in this study could be remediated through biological anaerobic reductive dechlorination processes.

  • PDF

Development of Simple Solvent Treating Methods to Enhance the Efficiency of Small-Molecule Organic Solar Cells

  • Kim, Jin-Hyun;Heo, Il-Su;Gong, Hye-Jin;Yu, Yeon-Gyu;Yim, Sang-Gyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.276-276
    • /
    • 2012
  • The interface morphology of organic active layers is known to play a crucial role in the performance of organic photovoltaic (OPV) cells. Especially, a controlled nanostructure with a large contact area between electron donor (D) and acceptor (A) layers is necessary to improve the power conversion efficiency (PCE) of the cells since the short exciton diffusion lengths in organic semiconductors limit the charge (hole and electron) separation before excitons recombination. In this work, we developed simple solvent treating methods to fabricate a nanostructured DA interface and applied them to enhance the PCE of ZnPc/C60 based small molecule OPV cells. Interestingly, it was observed that the solvent treatment on the donor layer prior to the deposition of the acceptor layer resulted in a significant decrease in PCE, which was due to an existence of undesirable voids at the DA interface. Instead, the solvent vapor treatment after the DA bilayer formation led to densely packed and well dispersed DA contacts. Consequently, 3-fold enhancement of PCE as compared to the untreated bilayer cell was accomplished.

  • PDF

Characterization of Membrane-bound Nitrate Reductase from Denitrifying Bacteria Ochrobactrum anthropi SY509

  • Kim Seung-Hwan;Song Seung-Hoon;Yoo Young-Je
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권1호
    • /
    • pp.32-37
    • /
    • 2006
  • In this study, we have purified and characterized the membrane bound nitrate reductase obtained from the denitrifying bacteria, Ochrobactrum anthropi SY509, which was isolated from soil samples. O. anthropi SY509 can grow in minimal medium using nitrate as a nitrogen source. We achieved an overall purification rate of 15-fold from the protein extracted from the membrane fraction, with a recovery of approximately 12% of activity. The enzyme exhibited its highest level of activity at pH 5.5, and the activity was increased up to $70^{\circ}C$. Periplasmic and cytochromic proteins, including nitrite and nitrous oxide reductase, were excluded during centrifugation and were verified using enzyme essay. Reduced methyl viologen was determined to be the most efficient electron donor among a variety of anionic and cationic dyestuffs, which could be also used as an electron donor with dimethyl dithionite. The effects of purification and storage conditions on the stability of enzyme were also investigated. The activity of the membranebound nitrate reductase was stably maintained for over 2 weeks in solution. To maintain the stability of enzyme, the cell was disrupted using sonication at low temperatures, and enzyme was extracted by hot water without any surfactant. The purified enzyme was stored in solution with no salt to prevent any significant losses in activity levels.

Synthesis, Photophysical and Electrochemical Properties of Novel Conjugated Donor-Acceptor Molecules Based on Phenothiazine and Benzimidazole

  • Zhang, Xiao-Hang;Kim, Seon-Ho;Lee, In-Su;Gao, Chun-Ji;Yang, Sung-Ik;Ahn, Kwang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권8호
    • /
    • pp.1389-1395
    • /
    • 2007
  • Two series of new organic fluorophores such as asymmetrical 3-(benzimidazol-2-yl)-10-hexylphenothiazine derivatives 1 and symmetrical 3,7-bis(benzimidazol-2-yl)-10-hexylphenothiazine derivatives 2 have been synthesized. Electronic absorption, fluorescence, and electrochemistry measurements reveal that the electron withdrawing benzimidazole subunit directly connected to the phenothiazine core facilitates the charge transfer characters which were also verified by the theoretical calculations. Various substituents on the benzimidazole moieties can allow a fine-tuning of the LUMO energy levels of the molecules without significantly affecting the HOMO energy levels. The method provides a new route for designing ambipolar molecules whose energy levels are well-matched with the Fermi levels of the electrodes to facilitate the electron or hole injection/transfer in OLED devices.

미생물 성장 특성에 기초한 독립영양탈질의 화학양론식 연구 (A Study on the Reaction-Stoichiometry of Autotrophic Denitrification based on Growth Characteristic of Microorganism)

  • 이수원;김규동;최영균;김동한;정태학
    • 상하수도학회지
    • /
    • 제18권2호
    • /
    • pp.121-127
    • /
    • 2004
  • It is necessary to supply external carbon source for enhancement of biological nitrogen removal from domestic wastewater with low influent C/N ratio. Sulfide was chosen as a cost effective electron donor and reaction stoichiometry for autotrophic denitrification was investigated by conducting bench-scale experiments in this study. Higher sulfur to nitrogen (S/N) ratio than the calculated value from theoretical reaction stoichiometry was required when the anoxic reactor was operated at open condition because dissolved oxygen introduced by surface aeration reacted with sulfide with ease. In addition, higher sulfate production and lower yield of microorganism could be observed under the same condition. It was possible to obtain reliable reaction stoichiometry for autotrophic denitrification by establishing pure anoxic condition. Linear relationship between bacterial growth and consumption of nitrate, sulfide, alkalinity, and sulfate production enabled to derive a relatively correct reaction stoichiometry for autotrophic denitrification when sulfide was used as an electron donor.

Heterocyclic Nonlinear Optical Chromophores Composed of Phenothiazine or Carbazole Donor and 2-Cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran Acceptor

  • Cho, Min-Ju;Kim, Ja-Youn;Kim, Jae-Hong;Lee, Seung-Hwan;Dalton, Larry R.;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.77-84
    • /
    • 2005
  • We prepared the new nonlinear optical chromophores that show fairly high microscopic nonlinearity through intramolecular charge transfer. Phenothiazine and carbazole units played an important role to contribute high electron donability and connect the resonance pathway via conjugative effect in the cyclized ring beside the aromatic ring. Theoretical calculation, electrochemical analysis, and absorption spectroscopic study gave us useful information about the energy states and microscopic nonlinearities of two serial chromophores. We compared the microscopic nonlinearities of four chromophores with the conjugation length and electron donability in the push-pull type NLO chromophores. The effect of gradient donability and lengthening the conjugation were investigated on the electronic state and microscopic nonlinearity.

Zinc phthalocyanine(ZnPC)/$C_{60}$ 소자를 이용한 유기 광소자의 광기전특성 (Photovoltaic Properties of Organic Solar Cell using Zinc phthalocyanine(ZnPC)/$C_{60}$ devices)

  • 이호식;허성우;오현석;장경욱;이준웅;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 제6회 학술대회 논문집 일렉트렛트 및 응용기술연구회
    • /
    • pp.31-34
    • /
    • 2004
  • During the last 20 years organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerine$(C_{60})$ as electron acceptor(A) with doped charge transport layers, $Alq_3$ as an electron transport or injection layer. We observed the photovoltaic characteristics of the solar celt devices using the Xe lamp as a light source.

  • PDF

Photoluminescence Study on O-plasma Treated ZnO Thin Films

  • Cho, Jaewon;Choi, Jinsung;Yu, SeGi;Rhee, Seuk Joo
    • Journal of the Optical Society of Korea
    • /
    • 제17권6호
    • /
    • pp.543-547
    • /
    • 2013
  • A temperature dependent (10K-290K) photoluminescence (PL) study for two differently prepared ZnO thin films (as-grown and O-plasma treated) is presented. Four characteristic peaks were identified for both samples: (i) neutral donor-bound excitons ($D^oX$), (ii) two electron satellites (TES), (iii) phonon replica of $D^oX$ ($D^oX$-1LO), and (iv) donor-acceptor pair transition (DAP). As the sample temperature increased, $D^oX$-1LO and DAP transitions became indistinct. This was accompanied by newly-rising emission of free electron-acceptor transitions (e, $A^o$). The spectral evolution with temperature for as-grown samples also showed the optical emission from free excitons, which became dominant at higher temperatures. Some features related to O-plasma were identified in PL spectra: (i) different positions of TES transitions (28meV lower than $D^oX$ for as-grown samples and 35meV for O-plasma treated samples), (ii) the decrease of spectral intensity in both emissions of $D^oX$ and DAP after O-plasma treatment, and (iii) no noticeable transition from free excitons after the O-plasma treatment.