• Title/Summary/Keyword: Electromechanical strain

Search Result 72, Processing Time 0.028 seconds

Electrical Properties and Phase Transition Behavior of Lead-Free BaTiO3-Modified Bi1/2Na1/2TiO3-SrTiO3 Piezoelectric Ceramics (BaTiO3 첨가에 따른 Bi1/2Na1/2TiO3-SrTiO3 무연 압전 세라믹스의 전기적 특성 및 상전이 거동 연구)

  • Kang, Yubin;Park, Jae Young;Devita, Mukhllishah Aisyah;Duong, Trang An;Ahn, Chang Won;Kim, Byeong Woo;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.516-521
    • /
    • 2022
  • We investigated the microstructure, crystal structure, dielectric, and elecromechanical strain properties of lead-free BaTiO3 (BT)-modified (Bi1/2Na1/2)TiO3-SrTiO3 (BNT-ST) piezoelectric ceramics. Samples were prepared by a conventional ceramic processing route. Temperature dependent dielectric properties confirmed that a phase transition from a nonergodic relaxor to an ergodic relaxor was induced when the BT concentration reached 1.5 mol%, interestingly, where the average grain size reached a maximum value of 4.5 ㎛. At the same time, enhanced electromechanical strain (Smax/Emax = 600 pm/V) was obtained. It is suggested that the induced ferroelectric-relaxor phase transition by the BT modification is responsible for the enhancement of electromechanical strain in 1.5 mol% BT-modified BNT-ST ceramics.

A Study on the Dielectric and Strain Properties of PNST Ceramics (PNST세라믹스의 유전 및 변형특성에 관한 연구)

  • 김진수;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.331-334
    • /
    • 1998
  • The solid solutions of the Pb(Sc$\_$0.5/Nb$\_$0.5/)$\_$0.57/Ti$\_$0.43/O$_3$ system were prepared. In the PSNT system, it had been known that two-phase region between the rhombohedral and tetragonal phases was observed between 0.425 of PT at room temperature. In this paper, Fe$_2$O$_3$-doped 0.57PSN-0.43PT composition was prepared by conventional method. The dielectric and strain properties were examined using an computerized measuring apparatus, and the resonance characteristics were measured using an impedance gain phase analyzer. We got the data of dielectric constant, dielectric loss, piezoelectric coefficient, piezoelectric voltage coefficient, frequency constant strain constant mechanical quality factor and electromechanical coupling factor.

  • PDF

A Study on Piezoelectric and Strain Properties Using PMN-PT-PZ Ceramics with Ba Substitution (Ba 치환된 PMN-PT-PZ계 세라믹스의 압전 및 변위특성)

  • Ji, Seung-Han;Lee, Neung-Heon;Park, Kwang-Hyun;Park, Chong-Gook;Lee, Deok-Chool
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1113-1115
    • /
    • 1993
  • Piezoelectric Actuator samples were fabricated using PMN-PT-PZ ceramics with Barium substitution, and the strain properties of them were investigated. The tartest Piezoelectric coefficient and electromechanical coupling coefficient were observed at the sintering temperature $1250^{\circ}C$, Barium 5mol%. In the case of Multilayered specimens, they showed considerable strain and small hysteresis than single round type.

  • PDF

Development of novel strain sensor using surface acoustic wave (새로운 표면탄성파를 이용한 변형률 센서 개발)

  • Oh, Hae-Kwan;Hwang, U-Jin;Eun, Kyung-Tae;Choa, Sung-Hun;Lee, Kee-Keun;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.594-599
    • /
    • 2011
  • A SAW strain sensor based on Shear Horizontal wave with an 92 MHz central frequency was developed. It consists of SAW sensor, PCB substrate and bonding material (Loctite 401). External force applied to PCB substrate bonded to a piezoelectric substrate induces strain at the substrate surface, which causes changes in the elastic constant and density of the substrate and hence the propagation velocity of the SAW. The change in the velocity of the SAW result in a frequency shift of the sensor and by measuring a frequency shift, we can extract the strain induced by the external force. The $41^{\circ}$ YX $LiNbO_3$ was used because it has a Leaky shear horizontal(SH) wave propagation mode and a high electromechanical coupling coefficient ($K^2$=17.2%). And to compare with Rayleigh wave mode, $128^{\circ}$ YX $LiNbO_3$ was used. And to make a stable and low insert loss, Split IDT structure was used. The obtained sensitivity and linearity of the SAW strain sensor in the case of Split IDT were measured to be 17.2 kHz / % and 0.99, respectively.

Piezoelectric and Electric Field Induced Strain Properties of PMW-PNN-PZT Ceramics with the Substitution of Ba (Ba 치환에 따른 PMW-PNN-PZT 세라믹스의 압전 및 전계유기왜형 특성)

  • 윤광희;김규수;최병수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.20-25
    • /
    • 2001
  • To develop the piezoelectric actuator, the structural, dielectric and piezoelectric properties and electric fieldinduced strain of the ceramics(Pb$\_$1-2/Ba$\_$x/)[Mg$\_$1/2/W$\_$1/2/)$\_$0.03/-Ni$\_$1/3/Nb$\_$2/3/)$\_$0.12/-(Zr$\_$0.5/Ti$\_$0.5/)$\_$0.85/]O$_3$(x=0, 0.01, 0.03, 0.05, 0.07, 0.1) were investigated with the substitution of Ba. The tetragonality of crystal structure and grain size decreased by the substitution of Ba. Curie temperature decreased due to the decrease of the tetragonality, and dielectric constants increased with the substitution of Ba. The coercive field, remnant polarization and electromechanical coupling factor also decreased, whereas the piezoelectric constatns d$\_$33/ and d$\_$31/ were showed the highest value of 430 and 209(x10$\^$-12/C/N), respectively, because of the increase of dielectric constant. The strain induced by 60Hz AC electric field had the maximum value of 204x10$\^$-6/Δℓ/ℓ at the substitution of Ba 3mol%. As the applied electric field approaches to the coercive field, the piezoelectric element is depolarized and the electric field induced strain revealed non-linearity.

  • PDF

Dielectric and electrostrictive properties of (Pb,Ba)(Zr,Ti))$O_3$ ceramics with $Y_2O_3$addition ((Pb,Ba)(Zr,Ti)$O_3$계 세라믹스의 )$Y_2O_3$첨가에 따른 유전 및 전왜 특성)

  • 김규수;윤광희;윤현상;홍재일;유주현;박창엽
    • Electrical & Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.551-557
    • /
    • 1996
  • To decrease the hysteresis of electric field induced strain, $Y_{2}$ $O_{3}$ dopant of which amount is 0-0.8wt% was added to the (P $b_{0.73}$B $a_{0.27}$)(Z $r_{0}$ 75/ $Ti_{0.25}$) $O_{3}$ ceramics. Electromechanical coupling coefficients of the specimen with 0.1 Wt% $Y_{2}$ $O_{3}$ were $k_{p}$=26.9% and $k_{31}$ =20.4%, which exhibited the maximum value at the constant bias electric field of 10 kV/cm. At the same $Y_{2}$ $O_{3}$ addition amount, electric field piezoelectric constant ( $d_{3l}$) and strain(.DELTA.l/l) showed the maximum values of 139.6*10$^{-12}$ [C/N] and 126*10$^{-6}$ .DELTA. l/l respectively at 10 kV/cm electric field. And the hysteresis of strain showed the minimum value of 17.5%. So, we propose that it is possible to apply PBZT system with $Y_{2}$ $O_{3}$ dopant to the electrostrictive actuator.r.r.

  • PDF

Influence of flexoelectricity on bending of piezoelectric perforated FG composite nanobeam rested on elastic foundation

  • Ali Alnujaie;Alaa A. Abdelrahman;Abdulrahman M. Alanasari;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.361-380
    • /
    • 2023
  • A size dependent bending behavior of piezoelectrical flexoelectric layered perforated functionally graded (FG) composite nanobeam rested on an elastic foundation is investigated analytically. The composite beam is composed of regularly cutout FG core and two piezoelectric face sheets. The material characteristics is graded through the core thickness by power law function. Regular squared cutout perforation pattern is considered and closed forms of the equivalent stiffness parameters are derived. The modified nonlocal strain gradient elasticity theory is employed to incorporate the microstructure as well as nonlocality effects into governing equations. The Winkler as well as the Pasternak elastic foundation models are employed to simulate the substrate medium. The Hamiltonian approach is adopted to derive the governing equilibrium equation including piezoelectric and flexoelectric effects. Analytical solution methodology is developed to derive closed forms for the size dependent electromechanical as well as mechanical bending profiles. The model is verified by comparing the obtained results with the available corresponding results in the literature. To demonstrate the applicability of the developed procedure, parametric studies are performed to explore influences of gradation index, elastic medium parameters, flexoelectric and piezoelectric parameters, geometrical and peroration parameters, and material parameters on the size dependent bending behavior of piezoelectrically layered PFG nanobeams. Results obtained revealed the significant effects both the flexoelectric and piezoelectric parameters on the bending behavior of the piezoelectric composite nanobeams. These parameters could be controlled to improve the size dependent electromechanical as well as mechanical behaviors. The obtained results and the developed procedure are helpful for design and manufacturing of MEMS and NEMS.

The Stator Characteristics Analysis of Ultrasonic Motor (초음파 모터의 고정자 특성 해석)

  • Choi, Jung-Seok;Baek, Soo-Hyun;Kim, Yong;Yoon, Shin-Yong;Choi, Chul-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.58-60
    • /
    • 2002
  • In this paper the bending vibration analysis of stator for a ring type ultrasonic motor is described. Considering the electromechanical coupling effect, the concepts of generalized stress and strain are explained in detail using the generalized piezoelectric equations, which is the relationship between generalized stress and strain, the differential motion equation were derived. The vibration modes and resonance frequencies of the stator were calculated using the finite element code ATILA.

  • PDF

The Piezoelectric and Dielectric Properties of PZT-PMN Ceramics (PZT-PMN 압전 세라믹의 압전 및 유전 특성)

  • Lee, J.S.;Lee, Y.H.;Hong, J.K.;Jeong, S.H.;Chai, H.I.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.131-134
    • /
    • 2001
  • In this paper, the piezoelectric and dielectric properties as a function of x and a in $aPbZr_xTi_{1-x}O_3-(1-a)Pb(Mn_{1/3}Nb_{2/3})O_3$ + ywt%MgO is investigated. As a results, when a is 0.95 and x is 0.505, electromechanical coupling factor$(k_p)$, permittivity${\varepsilon}_33^T/{\varepsilon}_0$, piezoelectric strain constant$(d_{33})$ and mechanical quality factor$(Q_m)$ are 58 %, 1520, 272 pC/N and 1550, respectively. From XRD analysis, when x is 0.505, it is MPB which present rhombohedral and tetragonal phase in same quantity. Also, From SEM observation, when sintering temperature is $1150^{\circ}C$, grain size is about $2\;{\mu}m$. As a results added MgO dopant in the ternary piezoelectric ceramic, when MgO content is 0.1 wt%, $k_p$ increases to 63[%].

  • PDF

Research for Measurement and Modeling on Blocked Force of Electroactive Paper (생체 모방 종이 작동기 힘의 측정 및 모델링에 관한 연구)

  • Kang, Yu-Keun;Kim, Jae-Hwan;Jung, Woo-Chul;Song, Chun-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.731-734
    • /
    • 2005
  • Generally, characteristics of electromechanical actuators are coupled with the mechanical and the electrical properties. Important mechanical parameters of these actuators are the achievable force and displacement in the presence of electric field. These mechanical parameters are related to the stress and strain of the materials and the actuator geometry. This paper presents how to measure the blocked force by using the micro-balance. The blocked force is defined as the force produced by the transducer under an applied voltage when the tip is constrained to zero motion. Also, a theoretical force by using the cantilever beam model is calculated under elastic domain. From the sample of 4 cm $\times$ 1 cm $\times$ 20 $\mu$m, the blocked farce measured from the equipment is 20.3 $\mu$N at 8 V$_{DC}$. By comparing it with the theoretical value, 24.9 $\mu$N, the blocked force measurement is acceptable. The furce measurement is also investigated with different AC electric fields and the frequency.

  • PDF