• Title/Summary/Keyword: Electromagnetic-Thermal Co-Simulation

Search Result 8, Processing Time 0.027 seconds

Evaluation of Co-Frequency Interference with IMT System Caused by Mobile-Satellite Service System

  • Park, Jong-Min;Park, Dong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.141-145
    • /
    • 2009
  • Interference scenarios involving and a methodology for a terrestrial international mobile telecommunication(IMT) system and mobile-satellite service(MSS) system in a co-channel environment are established. Taking into account a practical deployment situation for both systems, a computational simulation of interference in terms of the ratio of interference power to thermal noise(I/N) is performed in order to evaluate the co-frequency interference with the IMT system caused by the MSS system. The methodology and results could be used for planning an IMT deployment without an unacceptable interference impact caused by the MSS system.

A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar

  • Lei, Jin;Zhong, Jian-ying;Wu, Shi-jin;Wang, Zhen;Guo, Yu-jing;Qin, Xin-yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.781-789
    • /
    • 2016
  • Busbar has been used as electric conductor within extra high voltage (EHV) gas insulated switchgear (GIS), which makes EHV GIS higher security, smaller size and lower cost. However, the main fault of GIS is overheating of busbar connection parts, circuit breaker and isolating switch contact parts, which has been already restricting development of GIS to a large extent. In this study, a coupled magneto-flow-thermal analysis is used to investigate the thermal properties of GIS busbar in steady-state. A three-dimensional (3-D) finite element model (FEM) is built to calculate multiphysics fields including electromagnetic field, flow field and thermal field in steady-state. The influences of current on the magnetic flux density, flow velocity and heat distribution has been investigated. Temperature differences of inner wall and outer wall are investigated for busbar tank and conducting rod. Considering the end effect in the busbar, temperature rise difference is compared between end sections and the middle section. In order to obtain better heat dissipation effect, diameters of conductor and tank are optimized based on temperature rise simulation results. Temperature rise tests have been done to validate the 3-D simulation model, which is observed a good correlation with the simulation results. This study provides technical support for optimized structure of the EHV GIS busbar.

A Study on High Frequency Induction Hardening of S45C Specimen by FEA and Experiment (유한요소해석 및 실험에 의한 S45C 시편의 고주파 유도경화에 관한 연구)

  • Park, Kwan-Seok;Choi, Jin-kyu;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2018
  • In this study, we proposed a high frequency induction hardening analysis method based on electromagnetic-thermal co-simulation. In the high frequency induction heating analysis, the results of the finite element analysis (FEA) (considering the change of the material property and the cooling factor according to the temperature) and those of the high frequency induction hardening experiment (using the S45C specimen) were compared. The hardness of the S45C specimens was measured using the micro Vickers hardness test to determine the depth of hardening. The measurement results were then compared with the results of FEA. The result of high frequency induction heating analysis showed that the temperature was more than $750^{\circ}C$, which is the A2 transformation point of S45C, while the temperature during quenching was below $200^{\circ}C$. The results showed that the difference of the depth of hardening between the FEA and the experiment is 0.2mm.

Design of Soft X-ray Tube and Simulation of Electron Beam by Using an Electromagnetic Finite Element Method for Elimination of Static Electric Field (전자기 유한요소법 전자빔 시뮬레이션을 이용한 정전기장 제거용 연한 X-선관 설계 특성 연구)

  • Park, Tae-Young;Lee, Sang-Suk;Park, Rae-Jun
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.66-69
    • /
    • 2014
  • The spreading tube of X-ray cathode tube displayed with an electromagnetic finite element method was designed. To analyze a feature design and the concrete coordinate performance of soft X-ray tube modeling, the orbit of electron beam was simulated by OPERA-3D SW program. The fixed conditions were the applied voltage, the temperature, the work function of thermal electron between cathode and anode of tungsten. Through the analysis of distribution of electron beam and the variation of dividing region, the design of soft X-ray spreading tube equipped with two cross filaments was optimized.

Study of EMI Suppression Method Applied on DC Motor Driver of Power Tail Gate (파워테일게이트의 DC모터구동회로에 적용된 EMI 저감기법에 대한 연구)

  • Kim, Yeong-Sik;Yoon, Yong-Soo;Jung, Hun;Gohng, Jun-Ho;Lee, Sang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • This paper presents electromagnetic interference(EMI) suppression method applied on the direct current(DC) motor driver for power tail gate control. EMI noise is generated by the fast switching of power devices connected to electric loads. It has become a matter of concern because of the vast increase in the number and sophistication of electronic system in automotive environment. The proposed EMI reduction method is based on the principle of reducing the transient speed of power devices by changing the parameters of the driver circuit related to the power MOSFET. In this paper, power losses were calculated by loss equations and thermal simulation was used to evaluate the effect on printed circuit board. Based on these results, the DC motor driver was fabricated and tested. The proposed method can help to design a DC motor driver which allows it to obtain an acceptable compromise between power losses and EMI.

Design of a generator control system for small nuclear distributed generation

  • Yoon, Dong-Hee;Jang, Gil-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.311-318
    • /
    • 2011
  • Small-scale reactors have recently attracted attention as a potential power generation source for the future. The Regional Energy Research Institute for Next Generation is currently developing a small-scale reactor called Regional Energy rX 10 MVA (REX-10). The current paper deals with a power system to be used with small-scale reactors for multi-purpose regional energy systems. This small nuclear system can supply electric and thermal energy like a co-generation system. The electrical model of the REX-10 has been developed as a part of the SCADA system. REX-10's dynamic and electromagnetic performance on the power system is analyzed. Simulations are carried out on a test system based on Ulleung Island's power system to validate REX-10 availability on a power system. RSCAD/RTDS and PSS/E software tools are used for the simulation.

Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System

  • Son, Gum Tae;Lee, Soo Hyoung;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1471-1481
    • /
    • 2014
  • This paper presents the new power dissipation model of individual switching device in a high-level modular multilevel converter (MMC), which can be mostly used in voltage sourced converter (VSC) based high-voltage direct current (HVDC) system and flexible AC transmission system (FACTS). Also, the voltage balancing method based on sorting algorithm is newly proposed to advance the MMC functionalities by effectively adjusting switching variations of the sub-module (SM). The proposed power dissipation model does not fully calculate the average power dissipation for numerous switching devices in an arm module. Instead, it estimates the power dissipation of every switching element based on the inherent operational principle of SM in MMC. In other words, the power dissipation is computed in every single switching event by using the polynomial curve fitting model with minimum computational efforts and high accuracy, which are required to manage the large number of SMs. After estimating the value of power dissipation, the thermal condition of every switching element is considered in the case of external disturbance. Then, the arm modeling for high-level MMC and its control scheme is implemented with the electromagnetic transient simulation program. Finally, the case study for applying to the MMC based HVDC system is carried out to select the appropriate insulated-gate bipolar transistor (IGBT) module in a steady-state, as well as to estimate the proper thermal condition of every switching element in a transient state.

Comparative Study on Numerical Analysis using Co-simulation and Experimental Results for High Frequency Induction Heating on SCM440 Round Bar (연동해석을 통한 SCM440 환봉의 고주파 유도가열 해석 및 실험 비교분석에 관한 연구)

  • Lee, Inyoung;Tak, Seungmin;Pack, Inseok;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • The applications of high-frequency induction heating has recently been studied in various industrial fields. In this study, induction heating is applied to a SCM440 specimen that is widely used in industry. The specimen was made up of a cylinder 20 mm in diameter and 160 mm long. An induction heating power supply module was used to generate heat in the cylinder at a high frequency (approximately 85 kHz) for 50 seconds. The temperature of the specimen was measured at the 150 mm length in 5 second intervals. Results such as joule heat and temperature are compared with the numerical model analysis using an electromagnetic-thermal co-simulation technique. The analytical model of the cylinder was modeled by considering the skin effect. The median measured temperature after induction heating was conducted for 50 seconds was $57.65^{\circ}C$, compared to a predicted analytical value of $57.27^{\circ}C$. Thus, the analytical results are in good agreement with the experimental results, and this model can predict the induction heating phenomenon numerically.