• 제목/요약/키워드: Electromagnetic wave reflection material

검색결과 35건 처리시간 0.033초

광대역 특성을 갖는 3층형 페라이트 전파흡수체의 설계 (A Design of Ferrite Electromagnetic Wave Absorber Three Layered Type with Wide-Band Characteristics.)

  • 이창우;김동일
    • 한국항해학회지
    • /
    • 제22권4호
    • /
    • pp.51-57
    • /
    • 1998
  • According to the rapid development of the electric industry, the demand of the frequency allocation and the usage of electromagnetic wave are increased due to automation of modem society. Electromagnetic wave absorbers for anechoic chamber are needed to broaden the effective frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve the above requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the effective frequency bandwidth by the way of forming air layer(practically in urethane foam, etc.) on the ferrite tile. Therefore, an air layer is formed between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 400 MHz in bandwidth. In this paper, a broadband electromagnetic wave absorber are designed, which has the reflection characteristics less than -20 dB from 30 MHz to 8,000 MHz in the bandwidth. A super broadband electromagnetic wave absorber is achieved by inserting square Ferrite Cylinders Type with the thickness less than 23.5 mm and with the frequency band from 30 MHz to 8,000 MHz under the above tolerance limits. The purpose of this research is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell and also a wall material for preventing TV ghost, etc.

  • PDF

전파무향실용 페라이트 전파흡수체의 설계 (A Design of Ferrite Electromagnetic Wave Absorber for Anechoic Chamber)

  • 이창우;김동일;김하근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 추계종합학술대회
    • /
    • pp.408-413
    • /
    • 1998
  • Electromagnetic wave absorbers for anechoic chamber are needed to broaden the useful frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve it the alone requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer(practically use urethane foam, etc.) on the ferrite tile. Therefore, an air layer is formed between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 600 MHz in bandwidth. Accordingly, in this paper, a broadened electromagnetic wave absorber will be designed, which has the reflection characteristics less than -20 dB from 30 MHz to 6000 MHz in the bandwidth. Then we will design a super broadband electromagnetic wave absorber by inserting square Ferrite Cylinders Type with the thickness less than 11 m and with the frequency band from 30 MHz to 6000 MHz under the above tolerance limits. The purpose of this research is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for prevention TV ghost, etc.

  • PDF

전파무향실용 페라이트 전파흡수체의 설계 (Design of Ferrite Electromagnetic Wave Absorber for Anechoic Chamber)

  • 김동일;이창우;김하근;전상엽;정세모
    • 한국정보통신학회논문지
    • /
    • 제3권1호
    • /
    • pp.43-50
    • /
    • 1999
  • Electromagnetic wave absorbers for anechoic chamber are needed to broaden the useful frequency bandwidth, reduce the thickness, and decrease the weight. There are various absorbers proposed for the above conditions, but they could not decisively solve the above requirements. The Electromagnetic wave absorber made by a conventional ferrite tile has, for example, broadened the useful frequency bandwidth by the way of forming air layer. Therefore, an air layer is formed absorber between a reflection plate and a sintered Ni-Zn ferrite tile of 7 mm in thickness, which has reflectivity less than -20 dB from 30 MHz to 450 MHz in frequency band, far narrower than the aimed bandwidth. The purpose of this paper is on the development of a universal anechoic chamber for measuring radiated electromagnetic wave or immunity of electronic equipments, GTEM-cell, wall material for prevention of TV ghost, etc. Accordingly, in this paper, a broadened electromagnetic wave absorber is designed, which has the reflection characteristics less than -20 dB from 30 MHz to 5,430 or 8,000 MHz in the bandwidth. Then we will design a super broadband electromagnetic wave absorber by inserting square Ferrite Cylinders Type with the thickness less than 23.5 m in three-layed type and with the frequency band from 30 MHz to 5,430-8,000 MHz under the above tolerance limits.

  • PDF

Preparation and Electromagnetic Properties of an Electromagnetic Wave Absorber

  • Sun, Chang;Sun, Kangning;Pang, Laixue;Liu, Jian
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.61-64
    • /
    • 2016
  • In this study, we report the as-prepared MgO-doped $BaFe_{12}O_{19}$, which was prepared by calcination technique and high-energy ball milling process, as an electromagnetic wave absorber. The phase analysis of $BaFe_{12}O_{19}$ and the as-prepared MgO-doped $BaFe_{12}O_{19}$ was detected utilizing X-ray Diffractometer (XRD). The microstructure was characterized using Scanning Electron Microscope (SEM). By means of the transmission/reflection coaxial line method, the electromagnetic properties and microwave absorbing properties of the as-prepared electromagnetic wave absorber were studied. It is found that the electromagnetic wave absorber has a minimum reflection loss value of -41 dB at 4.27 GHz with a matching thickness of 2.6 mm. The experiment results revealed that the as-prepared electromagnetic wave absorber could find potential applications in many military as well as commercial industries.

FeSiCr에 Fe50Ni가 첨가된 폴리머 복합 시트의 전자파 흡수 특성 (Electromagnetic Wave Absorbing Properties of FeSiCr and Fe50Ni Flaky Powder-Polymer Composite Sheet)

  • 이석문;김상문
    • 한국전기전자재료학회논문지
    • /
    • 제27권7호
    • /
    • pp.462-467
    • /
    • 2014
  • In this paper, we studied the magnetic composite sheets for electromagnetic wave noise absorber of quasi-microwave band by using soft magnetic FeSiCr and Fe50Ni flakes with the thickness of about $1{\mu}m$ and polymer. The magnetic hysteresis curve including saturation magnetization and residual magnetization and the complex permeability characteristics of the composite sheets were investigated to clarify the mixing effect on electromagnetic wave absorption properties. The saturation magnetization was decreased about 10% while the residual magnetization was increased about 15% and the real parts of complex permeability at below 500 MHz were increased 0.6~4 while those values at above 500 MHz were decreased 0.4~2.5 according to the change of contents of FeSiCr and Fe50Ni powders. As a result, the reflection loss can be moved to the lower frequency from 2~3 GHz to 1~1.5 GHz as the contents of Fe50Ni flaky powder into FeSiCr flaky powder was increased up to 50%.

전파흡수체용 $Ni_{0.6}-A_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$의 열처리 온도에 따른 Ferrite-Rubber Composite의 전파흡수특성 (A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.6}-A_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite by Heat-Treatment Temperature of Ferrite)

  • 박연준;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.155-161
    • /
    • 2000
  • In this paper, we studied the relation between heat-treatment temperature of ferrite and electromagnetic wave absorbing properties of ferrite-rubber composite. The heat-treatment temperatures of ferrite are 1200 and $1300^{\circ}C$, 2 hr. As s result. it has been shown that the optimum heat-treatment temperature of ferrite for electromagnetic wave absorber are related to the chemical composition. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the control of heat-treatment temperature of ferrite.

  • PDF

$Ni_{0.6}-A_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite의 Ferrite 함량에 따른 전파흡수특성 (A Study on Electromagnetic Wave Absorbing Properties of $Ni_{0.6}-A_{0.1}-Zn_{0.3}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite by the variation of using amount of Ferrite)

  • 박연준;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.162-166
    • /
    • 2000
  • In this paper, we studied the relation between using amount of Ferrite and electromagnetic wave absorbing properties of ferrite-rubber composite. The variation of using amount of Ferrite have been 52 wt.% ~ 62 wt.%. As s result, it has been shown that the electromagnetic wave absorbing properties of ferrite-rubber composite are related to the using amount of Ferrite in composite. And, we can control electromagnetic wave absorbing properties of ferrite-rubber composite by the control of using amount of Ferrite.

  • PDF

Ferrite 함량변화에 대한 $Ni_{0.5}-A_{0.1}-Zn_{0.4}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite의 전파흡수특성 (Electromagnetic Wave Absorbing Properties of $Ni_{0.5}-A_{0.1}-Zn_{0.4}{\cdot}Fe_2O_4$ Ferrite-Rubber Composite with amounts of a Ferrite)

  • 박연준;신광호;허진;사공건
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계합동학술대회 논문집
    • /
    • pp.45-49
    • /
    • 2002
  • In this paper, we have studied about electromagnetic wave absorbing properties of ferrite-rubber composite with a variation of ferrite. Amounts of ferrite in a composite absorber were changed from 52 wt.% to 62 wt.%. As a result, it has been shown that the electromagnetic wave absorbing properties of ferrite-rubber composite are related to the amount of ferrite in composite absorber. As a summary, it could be controled the electromagnetic wave absorbing property of ferrite-rubber composite by changing some kinds of annex A and amount of ferrite.

  • PDF

전파흡수체의 전파흡수특성측정기법에 관한 연구 (A Study on Measuring Technique of Electromagnetic Wave Absorbing Characteristics of Microwave Absorbers)

  • 김동일;안영섭;정세모
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1992년도 정기총회 및 추계학술발표회
    • /
    • pp.2-29
    • /
    • 1992
  • According to the increase of occupation density of microwave frequency band on use microwave environments have been congested extensively. For shielding unnecessary electromagnetic wave of preventing the electromagnetic wave reflection a good conductor a low resistive material or a lossy material is mainly used. As a method to measure the absorbing characteristics of microwave absorber the fundamental microwave measuring method can be used. There is however a big problem in measuring errors since the wavelength of microwave is very short especially as in the case as microwave absorber for RADAR. Therefore this research aimed to a converting adaptor of 20mm${\Phi}$ coaxial tube from a Type-N connector to 20mm${\Phi}$ coaxial tube and to use it for designing microwave absorber and evaluating absorbing characteristics. Furthermore the measurements of absorbing characteristics and material constants have performed and reviewed which were carried out by using the coaxial tube in the short type and by using rectangular waveguide respectively As a result the validity of the measured values have been confirmed.

  • PDF

특정두께를 갖는 이방성복합재 구조의 전자파 응답특성 연구 (A Study on Electromagnetic Absorption Characteristics of the Anisotropic Composite Structure with Specific Thickness)

  • 정헌달;김덕주;이윤상
    • 한국군사과학기술학회지
    • /
    • 제1권1호
    • /
    • pp.114-127
    • /
    • 1998
  • A user friendly computer code(EMCOMST; Electro-Magnetic response for COMposite STructures) was developed which provides with computations of the response characteristics such as reflectance and transmittance to the incident wave angles, frequencies, composite thicknesses, ply orientations, and types of backplate as the linearly polarized transverse electro-magnetic wave is emitted to the advanced composite structures. In this investigation were reviewed the electromagnetic characteristics of the continuous orthotropic fiber-reinforced organic matrix composites with or without ferrite fillers, which are actively applied to low-weight and high-strength aircraft structures. Also were calculated the response of the three layered compound structures which have appropriately stacked above-mentioned materials as transmitting layer, absorbing layer, reflection layer, respectively under the specific thickness constraints for mechanical strength design requirements. For the composite structures presented in this study, minimum reflectance value less than -5㏈ can be obtained in the frequency range of 4 to 12 ㎓. In addition, analysis of structures attached isotropic radar absorbing materials(RAM) is facilitated by putting the material properties in the material input card entries adequately.

  • PDF