• Title/Summary/Keyword: Electromagnetic theory

Search Result 368, Processing Time 0.022 seconds

Analysis of Resonant MTM-TL Using Transmission Line Theory and Its Applications (전송 이론을 이용한 공진 MTM-TL 특성 분석 및 응용)

  • Jang, Seong-Nam;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1091-1096
    • /
    • 2009
  • Some closed-form expressions for circuit parameters are derived based on the equivalent circuits for the resonant MTM-TL(open and short). The lumped series resistance and shunt conductance, which explain radiation effects of a unit cell may be found by |$S_{11}$|(simulated or measured) with open and short terminations, respectively. The EM-simulated results, circuit-simulated results(obtained using extracted circuit parameters) and measurement results are shown to be in good agreement.

Diagnosis of Power and Control Cables Using Change of Reflection Coefficients Due to Weak Fault (미약한 결함에 의한 반사 계수 변화를 이용한 제어 및 전력 케이블의 상태 진단)

  • Yong, Hwan-Gu;Cui, Chenglin;Chae, Jang-Bum;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1269-1274
    • /
    • 2014
  • Since power and control cables have narrow bandwidth due to their loss at high frequencies, it is difficult to detect the weak fault using conventional reflectometry. It is because the reflected wave caused by the weak fault is overlapped and hidden by the ripple of the strong reflected wave from the end of the cable. This paper proves that the reflected wave from the weak fault can be considered to be linearly superposed on the strong reflected wave from the end of the cable based on the transmission line theory. Then, the weak fault point is experimentally diagnosed using the difference between reflection coefficients before and after the fault generation.

A Wideband High-Speed Frequency Synthesizer Using DDS (DDS를 이용한 광대역 고속 주파수 합성기)

  • Park, Beom-Jun;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1251-1257
    • /
    • 2014
  • In this paper, a 6~13 GHz ultra high speed frequency synthesizer having minimum 30 kHz step size and minimum 500 ns frequency settling time is proposed. In order to obtain fast settling time, fine resolution, and good phase noise performance, wideband output frequencies were synthesized based on DDS(Direct Digital Synthesizer) and analog direct frequency synthesis technology. The phase noise performance of wideband frequency synthesizer was estimated by the superposition theory and its results were compared with measured ones. The measured frequency settling time was below 500 ns, phase noise was below -106 dBc @ 10 kHz at 13 GHz, and frequency accuracy was measured below ${\pm}2kHz$.

A Coupled Line Impedance Transformer for High Termination Impedance with a Bandpass Filtering Response

  • Kim, Phirun;Jeong, Yongchae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.41-45
    • /
    • 2018
  • In this study, a short-ended coupled line with a short-circuit stub transmission line bandpass filtering impedance transformer is presented. The general designed equations are derived on the basis of circuit theory. The design curves are provided to examine the characteristic of the proposed impedance transformer. The proposed circuit is suitable for high termination impedance. To validate the design formulas, a $400-50{\Omega}$ impedance transformer is designed and fabricated at the operating center frequency ($f_0$) of 2.6 GHz. The measured results show a good agreement with the simulation. The measured insertion and return losses are 0.6 dB and 22.5 dB at $f_0$, respectively. The measured return loss is higher than 20 dB within the passband frequency of 2.51-2.7 GHz. Moreover, the stopband attenuation is higher than 25 dB from DC to 1.64 GHz of the lower stopband and from 3.12 GHz to 6.4 GHz of the higher stopband.

Calculating Array Patterns Using an Active Element Pattern Method with Ground Edge Effects

  • Lee, Sun-Gyu;Lee, Jeong-Hae
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • The array patterns of a patch array antenna were calculated using an active element pattern (AEP) method that considers ground edge effects. The classical equivalent radiation model of the patch antenna, which is characterized by two radiating slots, was adopted, and the AEPs that include mutual coupling were precisely calculated using full-wave simulated S-parameters. To improve the accuracy of the calculation, the edge diffraction of a ground plane was incorporated into AEP using the uniform geometrical theory of diffraction. The array patterns were then calculated on the basis of the computed AEPs. The array patterns obtained through the conventional AEP approach and the AEP method that takes ground edge effects into account were compared with the findings derived through full-wave simulations conducted using a High Frequency Structure Simulator (HFSS) and FEKO software. Results showed that the array patterns calculated using the proposed AEP method are more accurate than those derived using the conventional AEP technique, especially under a small number of array elements or under increased steering angles.

Numerical Calculation for Grounding Impedance of a Horizontal Ground Electrode Based on the Electromagnetic Field Theory (전자계 이론을 기반으로 한 수평접지전극의 접지임피던스 수치계산)

  • Lee, Bok-Hee;Cho, Sung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.76-83
    • /
    • 2014
  • This paper deals with the numerical method of calculating the frequency-dependent impedances of grounding electrodes. The proposed electromagnetic field approach is based on the solutions to Maxwell's equations obtained from the method of moment in the frequency domain. In order to evaluate the quality of the proposed simulation method, the frequency-dependent impedances of horizontally-buried ground electrodes were presented. The program for calculating the current distributions and impedances of grounding electrodes was implemented in MATLAB. The grounding impedances of two 10m and 50m long horizontal ground electrodes were measured and simulated in the frequency range from 100Hz to 10MHz for easy analysis and comparison. Also the simulated results were compared with those calculated from a sophisticated computer program CDEGS (HIFREQ module). As a result, the resultant results of frequency-dependent impedances obtained by using the numerical simulation method proposed in this work are in good agreement with experimental data. The validity of the approach techniques was confirmed.

Wideband ENG Zeroth-Order Resonant Antenna Having Mushroom Shape (버섯 형태를 갖는 광대역 ENG 영차 공진 안테나)

  • Chang, Woo-Cheol;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.997-1002
    • /
    • 2009
  • This Letter presents a wideband ENG(Epsilon Negative) ZOR(Zeroth-Order Resonant) antenna designed on a microstrip line. It has a mushroom structure and its size is only $7.65{\times}1.31{\times}2.37\;mm$(or $0.306{\times}0.053{\times}0.095\;{\lambda}_0$ at 12 GHz) owing to zeroth-order resonance. The design procedures with closed form solutions are provided using transmission line theory considering radiation loss. The measured antenna bandwidth is about 20.0 % at 9.2 GHz and antenna gain is 7.1 dBi despite the compact size.

Reactive- Loaded Interstitial Antenna (리엑턴스가 장하된 인체에 사용되는 삽입형 안테나)

  • Ahn, Hee-Ran;Myung, Noh-Hoon;Kim, Bumman
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.9
    • /
    • pp.979-984
    • /
    • 2003
  • A reactive-loaded interstitial antenna(RLIA) is proposed for 2.45 GHz. It basically consists of a coaxial cable and a reactive load(RL). The RL is tipped at the end of the antenna and contributes to almost perfect matching and desirable heating area. For the almost perfect matching, a matching technique based on transmission line theory is suggested and the RLIA immersed in muscle phantom is designed, fabricated, measured and compared. The measured return loss of the RLIA is - 28.377 dB, which may be considered the best among those reported. Due to the excellent matching performance, the RLIA can also be applied for the treatment of deep-seated tumor or cancer with only one RLIA.

Design of Narrow-band Waveguide Bandpass Filters Using Single E-Plane Structures (단일 E-평면구조를 이용한 협대역 도파관형 대역통과 여파기의 설계)

  • 박준석;임재봉;김철동
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.2
    • /
    • pp.35-44
    • /
    • 1995
  • In this paper, the single E-plane structure which is inserted in the slot of waveguide tube for good yield has been proposed and analyzed by the variational method. A CAD program for designing of the narrow-band waveguide bandpass filters has been developed by the passband correction method with filter synthesis theory. Using the developed CAD program, 0.02dB equi-ripple Chebyshev type 5-section bandpass filter is designed at the center frequency of 3.82GHz, fabricated with tunable structure. The experimental results show good agreements with the theoretical results.

  • PDF

Scattering Model for Hard Target Embedded inside Forest Using Physics-based Channel Model Based on Fractal Trees (프랙탈 나무 모델을 이용한 숲 속에 숨어 있는 타겟의 산란모델)

  • Koh Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.174-181
    • /
    • 2005
  • In this paper, a hybrid model is developed, which can estimate scattering properties of a target embedded inside a forest. The model uses a physic-based channel model for a forest to accurately calculate the penetrated field through a forest canopy. The channel model is based on a fractal tree geometry and single scattering theory. To calculate scattering from the target physical optics(PO) is used to compute an induced current on the target surface since the dimension of the target is generally very large and the shape is very complicated. Then using reciprocity theorem, scattering generated by the PO current is calculated without an extra computational complexity.