• Title/Summary/Keyword: Electromagnetic suspension system

Search Result 75, Processing Time 0.023 seconds

Status of Advanced Tecnhologies and Domestic Researches for Development of Korean Next Generation Maglev (한국형 차세대 자기부상열차 개발을 위한 선진기술분석 및 국내연구현황)

  • Cho, Han-Wook;Bang, Je-Sung;Han, Hyung-Seok;Sung, Ho-Kyung;Kim, Dong-Sung;Kim, Byung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1767-1776
    • /
    • 2008
  • This paper presents the status of advanced technologies and domestic researches for development of Korean next generation maglev. Generally, two specific configurations such as the EMS (Electromagnetic Suspension) with LSM (Linear Synchronous Motor) and EDS (Electrodynamic Suspension) with LSM can be employed as a propulsion and levitation device of high-speed maglev. Worldwide high-speed maglev developments refer to projects such as the German Transrapid with EMS, the Japanese MLX with EDS, and the U.S. Inductrack with PM (Permanent Magnet) EDS maglev system. In this paper, the propulsion and levitation systems of these world wide high-speed maglev have been reviewed and analysed.

Modeling and Aalyzing Electromagnets for Magnetic Suspension Systems

  • Lee, Sang-Heon;Baek, Yoon-Su;Jung, Kwang-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.28-33
    • /
    • 2006
  • Various precision engineering studies have attempted to remove mechanical friction, which causes the performance of a system to deteriorate, from precision positioning devices. Since the classical fluid lubrication method has some disadvantages in clean environments, attention has been focused on magnetic bearings and contact-free systems with their pollution-free characteristics. In this paper, f electromagnets are modeled and analyzed, not only for magnetic bearings but also for contact-free electromagnetic actuators. Three types of electromagnets that are appropriate for various applications were considered using magnetic circuitry theory. The results were experimentally validated.

A Study on Various Structural Characteristics of 100W Linear Generator for Vehicle Suspension (차량 현가장치적용 100W급 선형발전기의 다양한 구조 특성)

  • Kim, Ji-Hye;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.683-688
    • /
    • 2018
  • Recently, the demand for electric energy has been increasing due to the spread of hybrid electric vehicles. In this study, to meet this demand, the ANSYS MAXWELL electromagnetic simulation system was used to compare the power generation characteristics of three types of suspension system that can generate electricity using energy harvesting technology. Next, the optimal design was determined for each model by using the commercial PIDO (Process Integration and Design Optimization) tool, PIANO (Process Integration, Automation and Optimization). We selected three design variables and constructed an approximate model based on the experimental design method through electromagnetic analysis for 18 experimental points derived from Orthogonal Arrays among the experimental design methods. Then, we determined the optimal design by applying the Evolutionary Algorithm. Finally, the optimal design results were verified by electromagnetic simulation of the optimum design result model using the same analysis conditions as those of the initial model. After comparing the power generation characteristics for the optimal structure for each linear generator model, the maximum power generation amounts in the 8pole-8slot, 12pole-12slot, and 16pole-16slot structures were 366.5W, 466.7W and 579.7W, respectively, and it was found that as the number of slots and poles increases, the power generation increases.

Mathematical Modeling and Control for A Single Winding Bearingless Flywheel Motor in Electric/Suspension Mode

  • Yuan, Ye;Huang, Yonghong;Xiang, Qianwen;Sun, Yukun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1935-1944
    • /
    • 2018
  • With the increase of the production of energy from renewable, it becomes important to look at techniques to store this energy. Therefore, a single winding bearingless flywheel motor (SWBFM) specially for flywheel energy storage system is introduced. For the control system of SWBFM, coupling between the torque and the suspension subsystems exists inevitably. It is necessary to build a reasonable radial force mathematical model to precisely control SWBFM. However, SWBFM has twelve independently controlled windings which leads to high-order matrix transformation and complex differential calculation in the process of mathematical modeling based on virtual displacement method. In this frame, a Maxwell tensor modeling method which is no need the detailed derivation and complex theoretical computation is present. Moreover, it possesses advantages of universality, accuracy, and directness. The fringing magnetic path is improved from straight and circular lines to elliptical line and the rationality of elliptical line is verified by virtual displacement theory according to electromagnetic torque characteristics. A correction function is taken to increase the model accuracy based on finite element analysis. Simulation and experimental results show that the control system of SWBFM with radial force mathematical model based on Maxwell tensor method is feasible and has high precision.

Adaptive control strategy in electromagnetic levitation system

  • Kim, Seok-Joo;Kim, Jong-Moon;Kweon, Soon-Man;Kim, Kook-Hun;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1337-1342
    • /
    • 1990
  • This paper deals with control system design strategy for electrolmaginetic suspension (E.M.S.) system. For a successful control of E.M.S. system, the nature of E.M.S. system is deeply studied in the view point of non-linear, open-loop unstable, time-varying, non-minimum phase system. To find a special control treatment for E.M.S. system, analyses and simulations for various models are carried out. As one of the successful candidates, adaptive control concept is introduced and sample hardware system using digital signal processor is implemented.

  • PDF

Development of controller for a lateral motion of a staggered type Magnetic wheel with EMS system using feedback linearization (비선형 궤환 선형화 기법을 이용한 자기부상 열차의 부상 및 안내제어기의 개발)

  • Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.366-369
    • /
    • 1991
  • A nonlinear controller based on feedback linearization method is proposed for an electromagnetic suspension system. After exactly linearizing the system with nonlinear feedback, linear control technique is applied. Modeling of stagger typed magnet is introduced and controlled for not only levitation, but guidance. By the feedback linearization, the nonlinear, MIMO system is linearized and decoupled, so we can use linear control law. The simulation of this system control skim is demonstrated. Robustness properties of the proposed controller with respect to the load variations and external disturbance is also analyzed for a multi input multi output system. In this properties, the boundary of variation is proposed.

  • PDF

The Appoication of $H_{infty}$ Controller to A Magnetic Levitation System ($H_{infty}$ 제어기의 자기부상 시스템에의 적용)

  • Kim, Jong-Moon;Kim, Seog-Joo;Park, Min-Kook;Choi, Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.11
    • /
    • pp.494-502
    • /
    • 2002
  • In this paper, a suspension control of a magnetic levitation(MagLev) system with flexible rail is designed and presented. The numerical modelling for the electromagnetic system to be controlled as a target plant is carried out. And dome kinds of the hardware system including CPU board, AD board, DA board, sensors, and switching power amplifier are described. Using the derived model, the stabilizing controllers, such as PID and $H_{\infty}$ controller, for the MagLev system are designed using the MATLAB toolbox. The designed controllers are validated by some experimental results as well as numerical simulations. So it is shown that $H_{\infty}$ controller can give the better performance for the plant with flexible modes than PID controller.

Dynamic Analysis of Magnetically Levitation System Propelled by Linear Synchronous Motor (선형동기전동기 추진 자기부상시스템 동특성 해석)

  • Kim, Ki-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1820-1826
    • /
    • 2016
  • This paper deals with dynamic characteristics of the experimental magnetic levitation vehicle employing LSM(Linear Synchronous Motor) for propulsion. To predict the dynamic characteristics of the system, the dynamic model which is composed of the electrical elements such as electromagnets and LSM and mechanical components and is developed based on multibody dynamics is developed. The resulting system equations of motion for the model are a coupled one representing all the mechanical and electrical parts. To verify the dynamic model of the system, air gaps are measured in both running tests and simulation, and the frequency characteristics of air gaps are analyzed. From the results, it can be seen that the frequency responses are almost the same. Finally, to evaluate the levitation stability and the designed controller, numerical simulations are carried out.

Controll Characteristics of Electromagnetically Levitated Rigid Body Bogie-Truck and Twist Response Type of Bogie-Truck (강휴태차(剛休台車)와 비틀림 응답형태차(答型台車)의 제어특성(制御特性))

  • Kwon, B.I.;Masada, E.
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.142-145
    • /
    • 1989
  • The electromagnetic suspension system, which is a kind of magnetic levitation, can be categorized into two groups; separate lift & guidance system and combined lift & guidance system. This paper deals with the latter system, in which lift and guidance forces are generated by a pair of staggered magnets with the inverted U- shaped rail. In this work, a rigid body bogie-truck and a twist response type of bogie-truck, which are constructed by two magnetic wheels consist of two staggered magnet pairs, are modeled, and curvature running characteristics of both types obtained by simulation are presented. Simulation result showed that curvature running characteristics of twist response type of bogie-truck is better than that of rigid body bogie-truck.

  • PDF