• Title/Summary/Keyword: Electromagnetic suspension system

Search Result 75, Processing Time 0.029 seconds

A Experiment of the damping effect for Electromagnetic Damper using DC Motor and Ballscrew (DC Motor와 Ballscrew를 이용한 Electromagnetic Damper Damping 효과 실험)

  • Kang, Jeong-Ho;Lee, Hac-Choel;Jeong, Young-Suk
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.124-126
    • /
    • 2008
  • In this Paper, the modeling of the electromagnetic damper for automobile suspension is presented and the validation of the model is demonstrated by experiments. An electromagnetic damper, composed of a rotary DC motor, and a ball screw and nut. The damper then operates as a linear electric actuator. The damper then operate as a linear electric actuator. The results indicate the proposed system is feasible and it is proved that the electromagnetic damper has better than oil damper of passive control system.

  • PDF

A Time Delay-Based Gain Scheduled Control and It's Application to Electromagnetic Suspension System (시간 지연 이득 계획 제어와 자기 부상 시스템에의 응용)

  • Sung, Ho-Kyong;Jho, Jeong-Min;Cho, Heung-Jae;Kim, Dong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.221-225
    • /
    • 2005
  • This paper proposes a gain scheduled control technique using time-delay for the nonlinear system with plant uncertainties and unexpected disturbances. The time delay-based gain scheduled control depends on a direct estimation of a function representing the effect of uncertainties. The information from the estimation is used to cancel the unknown dynamics and the unexpected disturbances simultaneously. The proposed estimation scheme with a finite convergence time is formulated in order to estimate the unborn scheduling variable variation. In other words, the time delay-based gain scheduled control uses the past observation of the system's response and the control input to directly modify the control actions rather than to adjust the controller gains or to identify system parameters. It has a simple structure so as to minimize the computational burden. The benefits of this proposed scheme are demonstrated in the simulation of an electromagnetic suspension system with plant uncertainties and external disturbances, and the proposed controller is compared with the conventional state feedback controller.

  • PDF

Variable Structure Control of an Electromagnetic Suspension Sys Using Adaptive Load Estimation (상전도 흡인식 자기 부상 시스템의 적응 제어 부하 예측기를 이용한 가변 구조 제어기 설계)

  • Lee, Sang-Bin;Lee, Jeong-Uk;Lee, In-Ho;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1982-1984
    • /
    • 1997
  • In this paper, adaptive variable structure control is proposed for Electromagnetic Suspension(EMS). Although variable structure control shows excellent robustness to unstructured modelling uncertainty, such as flux leakage and saturation, it has several drawbacks that severely limit practical applicability such as high control activity and control chattering. To minimize these effects, the mass of the electromagnet and efficiency of levitation force are estimated on-line to reduce the range of system uncertainty. The effectiveness of the proposed control scheme is verified by experimental results using a 1.5kg electromagnet and DSP (TMS320C31).

  • PDF

Study of Design for Maglev Levitation Controller based on LQ theory (LQ제어 기법을 활용한 자기부상열차 부상제어기 설계에 관한 연구)

  • Lee, Nam-Jin;Han, Hyung-Suk;Yang, Bang-Sup;Kim, Chul-Geun
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.865-871
    • /
    • 2007
  • The levitation system of Maglev is composed with electro-magnet, power supplier, controller and sensor. The complex interactions between above subcomponents define the characteristics of electromagnetic suspension of the vehicle. In this study, to understand the influence of controller on the running performance of Maglev, the new controller based on LQ theory will be designed and be simulated with simplified vehicle model. Then the influence of controller on the characteristics of electromagnetic suspension will be reviewed through comparison with existing control algorithm of our prototype vehicle.

  • PDF

Air Gap Responses of the Maglev Vehicle UTM-01 to Irregularities of Guideway (자기부상열차 UTM-01의 부상 공극 해석)

  • Han, Hyung-Suk;Kim, Sook-Hee;Yim, Bong-Hyuk;Kwon, Jung-Il;Hur, Young-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.291-295
    • /
    • 2007
  • The irregularities in the guideways used in the Maglev transportation system that result from surface roughness and deflection of guideway have strong effects on the dynamic characteristics of Maglev vehicles, because the electromagnetic suspension of Maglev vehicles strongly interacts with the guideway. For this reason, a numerical prediction of air gap responses to these irregularities is desirable to improve aspects of running performance, such as stability and passenger comfort, while minimizing aesthetic impact and construction cost. This paper presents a procedure to predict the air gap response which is a criteria for stability, and investigates the responses with the goal of attaining higher travel speeds in the urban Maglev vehicle UTM-01 utilizing electromagnetic suspension.

  • PDF

Stability Analysis of a Maglev Vehicle Utilizing Electromagnetic Suspension System (상전도 흡인식 자기부상열차의 주행 안정성 해석)

  • Han, Hyung-Suk;Kim, Sook-Hee;Yim, Bong-Hyuk;Hur, Young-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.118-126
    • /
    • 2008
  • The levitation stability of a Maglev vehicle utilizing electromagnetic suspension is primarily influenced by the deformation, roughness, and vibration of the guideway. Optimum design for both the vehicle and the guideway is desirable in order to reduce guideway construction cost, while meeting requirements for stability and ride quality. This paper presents an analysis of the levitation stability of the UTM-01, an urban Maglev vehicle, using a numerical simulation. The ODYN/Maglev, a dynamics analysis program, is used to simulate dynamics to evaluate the stability. A running test of the UTM-01 is also carried out to verify the results of the simulation. Using the simulation results, the levitation stability of the UTM-01 can be numerically analyzed at a variety of vehicle speeds.

Design of Robust Controller for Electromagnetic Suspension System with Kalman Filter (칼만 필터를 이용한 자기부상 시스템의 강인제어기 설계)

  • Jang, S.M.;Sung, S.Y.;Sung, H.K.;Jo, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1411-1413
    • /
    • 2000
  • Distubance of air-gap sensors by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension (EMS) systems. Thus, this paper proposes the output feedback controller with discrete kalman filter for the EMS systems. The discrete kalman filter estimate true state value and output feedback controller guarantee stability. The benefit of this scheme are shown by simulation. Therefore air-gap disturbance are rejected successfully.

  • PDF

Self-Sensing Electrostatic Suspension System (자가 검출 방식을 이용한 정전 부상 시스템)

  • 정학근;최창환;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.454-461
    • /
    • 2000
  • Electrostatic suspension offers an advantage of directly suspending various materials such as conductive materials, semiconductors and dielectric materials without any mechanical contacts. This is a specific feature compared with electromagnetic suspension which can suspend only ferro-magnetic material. In general, the electrostatic suspension systems require position sensors for stabilizing the suspended object. Therefore, a lot of displacement sensors and a switching circuit are required for moving the object through a long distance. In order to circumvent this problem, this paper proposes a self-sensing method which can provide the gap displacement between electrodes and suspended object without external sensors. Moreover a simple on-off controller is presented for stabilization. Experimental validation of the proposed scheme has been performed through the successful levitation of a 4-inch silicon wafer.

  • PDF

Manufacturing and Dynamic Performance test for Prototype Bogie of half Maglev vehicle (자기부상열차 시험용 1/2차량 대차제작과 주행성능 실험)

  • Lee, Nam-Jin;Han, Hung-Suk;Lee, Wan-Sang;Kim, Chul-Geun
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1575-1580
    • /
    • 2009
  • Maglev vehicle has two kinds of suspension system such as a secondary suspension with air-spring and a primary suspension as electromagnetic suspension which composed of electromagnet, magnet driver, controller and sensors. The interaction between each dynamic component of vehicle and track effects the stability and running performance. To achieve the specified performance of vehicle, many various approaches of research were tried, then as the result of these efforts, the first commercial operating with Maglev will start soon. The bogie for revenue service from 2012 has some significant modifications compared to the previous one, and to verify the changes the half prototype vehicle was manufactured and took the running performance test. In this report, we will introduce the stage of manufacturing and report results of dynamic performance tests to verify new concept of bogie mechanism.

  • PDF

Identification of eighteen flutter derivatives of an airfoil and a bridge deck

  • Chowdhury, Arindam Gan;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.7 no.3
    • /
    • pp.187-202
    • /
    • 2004
  • Wind tunnel experiments are often performed for the identification of aeroelastic parameters known as flutter derivatives that are necessary for the prediction of flutter instability for flexible structures. Experimental determination of all the eighteen flutter derivatives for a section model facilitates complete understanding of the physical mechanism of flutter. However, work in the field of identifying all the eighteen flutter derivatives using section models with all three degree-of-freedom (DOF) has been limited. In the current paper, all eighteen flutter derivatives for a streamlined bridge deck and an airfoil section model were identified by using a new system identification technique, namely, Iterative Least Squares (ILS) approach. Flutter derivatives of the current bridge and the Tsurumi bridge are compared. Flutter derivatives related to the lateral DOF have been emphasized. Pseudo-steady theory for predicting some of the flutter derivatives is verified by comparing with experimental data. The three-DOF suspension system and the electromagnetic system for providing the initial conditions for free-vibration of the section model are also discussed.