• Title/Summary/Keyword: Electromagnetic interference shielding

Search Result 107, Processing Time 0.023 seconds

Electromagnetic Interference Suppression Method of Motor Assembly for Aircraft Application (항공용 모터 조립체의 전자기 간섭 감쇠 방안)

  • Kim, Jee-Heung;Ryu, Hong-Kyun;Park, Beom-Jun;Park, Young-Ju
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.351-358
    • /
    • 2018
  • In this study, we propose a method of suppressing the leakage noise signal of motor assembly through the test. The motor assembly is mounted on outside of the aircraft to rotate an antenna and must satisfy RE102 requirement on MIL-STD-461F in terms of electromagnetic interference. It is confirmed by RE102 test result hat the leakage noise signal of the equipment occurs due to external influx through the power and control cable and rotation of the motor. And it is ascertained that the part where internal/external physical shielding is difficult to rotate is the leakage path. To reduce the leakage noise signal, the electrical ground reinforcement and the electric shielding structure considering the operation of the equipment is applied and it is verified that the requirement is satisfied. Finally, we verified that required specification are met by applying circular corrugated choke with interlocking shapes and conductive grease to the noise leakage path.

Electrical Properties of CNT and Carbon Fiber Filled Hybrid Composites Based on PA66

  • Lee, Minji;Park, Se-Ho;Jhee, Kwang-Hwan;Kye, Hyoungsan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.65-71
    • /
    • 2021
  • In recent times, the demand for electronic devices has increased because of advancements in the electronics industry. Consequently, research on shielding against electromagnetic interference (EMI) from electronic devices has also progressed significantly. In particular, research on imparting electrical conductivity to plastic has seen substantial progress. In this study, the effect of hybrid fillers comprising carbon fiber (CF) and carbon nanotubes (CNTs) on the electrical properties of polyamide 66 (PA66) composites was investigated. PA66 composites were prepared using a BUSS Co-Kneader single-screw extruder. EMI shielding effectiveness (SE) increased with the increasing addition of unsized CF (UCF), sized CF (SCF), and CNTs. For the PA66/SCF/CNT hybrid filler composites, EMI SE significantly increased with the increase in SCF content. Finally, the hybrid filler comprising SCF and CNTs may have a synergistic effect on the EMI SE and surface resistivity of PA66/SCF/CNT composites.

Electrospun Magnetic Nanofiber as Multifunctional Flexible EMI-Shielding Layer and its Optimization on the Effectiveness

  • Yu, Jiwoo;Nam, Dae-Hyun;Lee, Young-Joo;Joo, Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.57-63
    • /
    • 2016
  • We developed a flexible and micro-thick electromagnetic interference (EMI) shielding nanofabric layer that also functions as a water resisting and heat sinking material. Electrospinning followed by a simple heat treatment process was carried on to produce the EMI-shielding Ni/C hybrid nanofibers. The ambient oxygen partial pressure ($pO_2$ = 0.1, 0.7, 1.3 Torr) applied during the heat treatment was varied in order to optimize the effectiveness of EMI-shielding by modifying the size and crystallinity of the magnetic Ni nanoparticles distributed throughout the C nanofibers. Permittivity and permeability of the nanofibers under the electromagnetic (EM) wave frequency range of 300 MHz~1 GHz were measured, which implied the EMI-shielding effectiveness (SE) optimization at $pO_2$ = 0.7 Torr during the heat treatment. The materials' heat diffusivity for both in-plane direction and vertical direction was measured to confirm the anisotropic thermal diffusivity that can effectively deliver and sink the local heat produced during device operations. Also, the nanofibers were aged at room temperature in oxygen ambient for water resisting function.

Electromagnetic Shielding Polymer Composites with Segregated Structure for Automotive Part Application: A Review (자동차 부품 적용을 위한 Segregated structure를 갖는 전자파 차폐용 고분자 복합소재 연구동향)

  • Lee, Jinwoo;Suhr, Jonghwan
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • With the rapid growth of the future mobility market, a large number of electronic parts are being used in automobile, and the importance of electromagnetic interference (EMI) shielding in the automobile market is growing to minimize malfunctioning among the parts. Accordingly, conductive polymer composites (CPCs) are getting a lot of attention as EMI shielding materials for the automotive, but there are still challenges in CPCs like high content of conductive filler to achieve proper EMI shielding effectiveness, and poor mechanical properties. This paper introduces main methods to manufacture CPCs with segregated filler structure, which can significantly reduce the filler content, and analyzes EMI shielding performance of each manufacturing method.

EMI shielding Effectiveness and the Physical Properties of Commercial EMI shielding Fabrics (시판 전자기파 차단 직물의 차폐효과 및 물성)

  • 한은경;오경화;김은애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.5
    • /
    • pp.694-702
    • /
    • 1999
  • By using commercial available electromagnetic interference (EMI) shielding fabrics, EMI shielding effectiveness(SE) and the physical properties were investigated. Thirteen specimens were chosen six fabrics were non-electrolytic plated with Cu, six plated with Cu+Ni and one plated with Ni, SE was measured by RF Impedance Analyzer HP4291A(Hewlett Co, Ltd)at the frequency of 100MHz-1.8GHz. The results showed that the commercial EMI shielding fabrics provided SE values over 30dB at the frequency of 100MHz-1.8GHz. Fabrics plated with Cu showed more effective shielding than those plated with Ni. The thickness of coating and fabric count were also influential factors on SE. Tensile properties were acceptable for lining fabrics but water vapor transport properties indicated that the better treatment condition were suggested to improve comfort properties.

  • PDF

Electromagnetic interference shielding characteristics for orientation angle and number of plies of carbon fiber reinforced plastic

  • Kim, Hong Gun;Shin, Hee Jae;Kim, Gwang-Cheol;Park, Hyung Joon;Moon, Ho Joon;Kwac, Lee Ku
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.268-276
    • /
    • 2014
  • Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers containing dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of $0^{\circ}$, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and $90^{\circ}$, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was $90^{\circ}$, which was perpendicular to the electromagnetic wave flow, as compared to $0^{\circ}$, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.

A Study on Slots to Improve the Shield Effects of a High Frequency RF module for Aircraft (항공기용 고주파 칩셋의 차폐율 개선을 위한 개구면 형상 연구)

  • Seung-Han, Kim;Sang Hoon, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.18-23
    • /
    • 2022
  • This paper examines the electromagnetic shielding structure of ultra-high frequency (UHF) RF modules used in aircraft. Advances in electrical and electronic technologies have increased the need for electronic equipment in aircraft. High-frequency wireless devices have become integrated circuits in the form of UHF integrated circuits to support a wide range of frequencies and miniaturisation. To ensure the functionality and performance of these integrated devices in aviation, shielding is necessary to prevent unexpected electromagnetic interference, which could be detrimental to aircraft safety. A shield structure was designed to protect the RF chipset from malfunctioning, and the shielding effectiveness was improved through the application of various geometric shapes.

Electromagnetic Interference Shielding of Carbon Fibers-Reinforced Composites (탄소섬유강화 복합재료의 전자파 차폐특성)

  • 심환보;서민강;박수진
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.860-868
    • /
    • 2000
  • In this work, the electro-magnetic interference (EMI) characteristics of PAN-based carbon fibers-reinforced composites are investigated with difference to manufactural parameters, i.e., fiber grade, fiber orientation angle, and laminating method. As a result, EMI shielding effectiveness (SE) of the composites greatly depends on a fiber orientation in composite angle. Especially, the fiber grade affects SE of composites in case of orientation angle of 0$^{\circ}$. Then the SE become greater as the change of electric character according to the arrangement directions, i.e., electrical anisotropy in the same constituent materials. This is due to the skin effect which is represented in the surface of electro-magnetic wave in high-frequency range. In all cases according to lamination methods, the composites represents SE of 83~98% over. Whereas, in symmetric and unsymmetric laminate structures, the SE decreases slightly as the laminate angles of composites increases. On the contrary. the repeating laminates structure shows the opposite tendency. Especially, 90$^{\circ}$ repeating laminate structure shows the SE more than 90% over the measuring frequency.

  • PDF

Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of MWCNT-reinforced Polypropylene Nanocomposites (다중벽 탄소나노튜브강화 폴리프로필렌 나노복합재료의 전자파 차폐효과 및 기계적 특성)

  • Yim, Yoon-Ji;Seo, Min-Kang;Kim, Hak-Yong;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.494-499
    • /
    • 2012
  • In this work, the effect of multi-walled carbon nanotube (MWCNT) on electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of MWCNT-reinforced polypropylene (PP) nanocomposites were investigated with varying MWCNT content from 1 to 10 wt%. Electric resistance was tested using a 4-point-probe electric resistivity tester. The EMI SE of the nanocomposites was evaluated by means of the reflection and adsorption methods. The mechanical properties of the nanocomposites were studied through the critical stress intensity factor ($K_{IC}$) measurement. The morphologies were observed by scanning electron microscopy (SEM). From the results, it was found that the EMI SE was enhanced with increasing MWCNT content, which played a key factor to determine the EMI SE. The $K_{IC}$ value was increased with increasing MWCNT content, whereas the value decreased above 5 wt% MWCNT content. This was probably considered that the MWCNT entangled with each other in PP due to an excess of MWCNT.

Electromagnetic interference shielding effectiveness and mechanical properties using metal powder/carbon fiber and epoxy-matrix composites (메탈 파우더/탄소 섬유강화 복합재료의 전자파 치폐 효과와 기계적성질)

  • HAN GIL-YOUNG;AHN DONG-GU;KIM JIN-SEOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.376-379
    • /
    • 2004
  • The aim of this study is to prepare mixed Ni/Mg/Al/Cu/Ti powder in epoxy matrix with carbon fiber (NCF, MCF, ACF, CCF, TCF) conductive composite possessing eletromagnetic interference(EMI) shilding effectiveness(SE). A series if NCF/MCF/ACF/CCF/TCF composite were prepared by the hand lay up method. The various compositions of NCF/MCF/ACF/CCF/TCF were 10, 25, 50 percent by weight. The best EMI shilding effectiveness of all NCF/MCF/ACF is doout 40dB.

  • PDF