• Title/Summary/Keyword: Electromagnetic interference

Search Result 839, Processing Time 0.023 seconds

Improving Electromagnetic Compatibility of the Infrared Flame Detector (적외선식 불꽃감지기의 전자파 적합성 개선)

  • Song, Hyun-Seon;Lee, Yeu-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.88-95
    • /
    • 2014
  • The infrared, flame detector uses to detect fire situation from the characteristics of fire sources radiant energy. But it is able to malfunction on account of susceptible to interference of various surrounding waves. This paper is designed 6 independent PCB-boards to minimize the closed loops of siginal circuit. Also considering the interaction of electric and magnetic fields, this paper is designed protecting circuit of current and voltage output to reduced electromagnetic interference. And this paper is improving electromagnetic susceptibility by ferrite bid, capacitor filter and grounding circuits.

Electromagnetic Fields in General Hospital (의료기관 내 전자파 환경)

  • Shin, Sei-One;Yun, Sang-Mo;Shin, Hyoun-Jin;Ahn, Hyun-Soo;Ahn, Hee-Deok
    • Journal of Yeungnam Medical Science
    • /
    • v.21 no.2
    • /
    • pp.167-176
    • /
    • 2004
  • Background: Electromagnetic fields (EMF) are ubiquitous in modern society including medical field. As the technology of medical instruments and telecommunications has developed rapidly, it has influenced on our lives in many ways. Modern medical practice requires high quality medical equipments, which have a great deal of electromagnetic interference and susceptibility. The purpose of this study were to evaluate electromagnetic condition under usual clinical condition and to suggest a practical guideline in general hospital. Materials and Methods: The actual state of the electromagnetic interference in the medical field was studied under usual clinical conditions including operating rooms, intensive care units, magnetic resonance imaging unit, and hyperthermia unit. Results: There was considerable noise as a result of electromagnetic fields from medical equipments including electrosurgical units and hyperthermia unit, and cellular phones, which could induce serious functional derangements of functioning medical devices. Conclusion: It will be necessary to evaluate the individual electromagnetic situations under various medical conditions and to define a limited zone for cellular phone as well as reposition medical equipments to secure a safer medical practice and to minimize electromagnetic interference.

  • PDF

A Study on Electromagnetic Interference of Electric Vehicles with Variations of Charging Device Inlet Location (전기자동차 충전구 위치에 따른 전자파 방사특성에 관한 연구)

  • Gwon, Sunmin;Woo, Hyungu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.694-701
    • /
    • 2016
  • According to revolutionary developments in automobile technologies, eco-friendly advanced vehicles (hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc.) are rapidly increasing. The electromagnetic compatibility is getting more important for development of a vehicle because those advanced vehicles are driven by electric energy and equipped with more electric systems. In general, electromagnetic compatibility tests consist of an electromagnetic interference(EMI) test and an electromagnetic susceptibility(EMS) test. EMI test of the electric vehicles are needed not only in driving mode but also in charging mode because they must be recharged by much electric energy for driving. Depending on vehicle manufacturers, the charging device type and the location of charging device inlet in electric vehicles are various. In this paper, in order to investigate EMI of electric vehicles in charging mode in consideration of the direction of measuring antenna and the location of charging device inlet, a series of electromagnetic emission tests are conducted using three electric vehicles (neighborhood electric vehicle, electric vehicle and electric vehicle-bus). The test results show that electromagnetic emission measurements in charging mode are dependent on the direction of measuring antenna and the location of charging device inlet.

Study on Optimal Phase Arrangement Considering the Characteristics of Inductive Interference from Overhead Transmission Lines (가공송전선 유도장해 특성을 고려한 최적 상배열 연구)

  • Kang, Kyung-Doo;Kim, Jin-Gyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • The domestic overhead transmission lines use a vertical configuration and reverse phase arrangement, but when there is a limitation in steel tower height because the transmission lines pass a height limit zone or special zone, an application of triangular arrangement is necessary, and a study on the optimal phase arrangement to minimize inductive interference for this is necessary. If conductor arrangement are changed, the action of electrostatic induction and electromagnetic induction becomes different from before changes, so the changed conductor arrangement should be reviewed in terms of inductive interference. So this paper presents an optimal phase arrangement to reduce inductive interference by calculating electrostatic induction and electromagnetic induction according to conductor arrangement.

Mathematical Models of Environmental Problems on the Electromagnetic Interference for Wind Turbines (풍력 터빈에 의한 전자기 간섭 환경 문제의 수학적 모델링)

  • Chang, Se-Myong
    • Journal of Environmental Science International
    • /
    • v.18 no.8
    • /
    • pp.911-918
    • /
    • 2009
  • Electromagnetic interference (EMI) is defined as the interaction phenomena of electromagnetic waves scattered from a large structure or complex terrain. In this study, the propagation of linear wave is modeled with ray theory, direct simulation Monte Carlo (DSMC), and some classical theories on flat plates. The wave physics of reflection, refraction, and diffraction are simulated for the investigation of front and back scattering of the one-dimensional plane wave from a tower with ray theory and DSMC, respectively. The effect of rotating disk idealized from the real wind-turbine blades is modeled with a simplified version of the classical electromagnetic theory as well as DSMC based on the ray theory.

Analysis of Regulatory Guidance on Electromagnetic Interference of Equipment for Safety of Nuclear Power Plants (원자력발전소 안전을 위한 전자파장해 검증 규제지침 분석)

  • Park, Jae Yoon;Ah, In Beom;Kim, Jaehyun;Choo, Jaeyul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.74-79
    • /
    • 2022
  • This study analyzes the contents of the second revised Regulatory Guide 1.180 (Revision 2) for electromagnetic compatibility qualification published by the U. S. Nuclear Regulatory Commission by comparing them with those of the previous version. The methods and acceptance criteria of both CE101 and CE102 tests pertaining to conductive emission and RE102 test for radiation emission are observed to have been modified in Revision 2. Furthermore, the revised guide is found to afford flexibility in using alternative methods for electromagnetic interference qualification by allowing the combination of different technical base standards.

Analysis of Radio Interference through Ducting for 2.5 GHz WiMAX Service

  • Son, Ho-Kyung;Kim, Jong-Ho;Kim, Che-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • Radio interference has been occurring in mobile communication services on the southern seashore in Korea. Monitoring the radio interference signal revealed that the main reason for the radio interference was a radio ducting signal coming from the seaside of Japan. In this paper, we have analyzed the effect of interference on WiMAX service using a 2.5 GHz frequency band between Korea and Japan. We focus on the interference scenario from base station to base station and we use the Minimum Coupling Loss (MCL) method for interference analysis and the Advanced Propagation Model (APM) for calculating the propagation loss in ducts. The propagation model is also compared with experimental measurement data. We confirm that the interfering signal strength depends on the antenna height and this result can be applied to deployment planning for each system with an interference impact acceptable to both parties.

Preparation and Characteristics of Conducting Polymer-Coated MWCNTs as Electromagnetic Interference Shielding Materials

  • Kim, Yeon-Yi;Yun, Ju-Mi;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • The conducting polymer-coated multi-walled carbon nanotubes (MWCNTs) were prepared by template polymerization of aniline and pyrrole on the surface of MWCNTs in order to develop the novel electromagnetic interference (EMI) shielding materials. The conducting polymer phases formed on the surface of MWCNTs were confirmed by field emission-scanning electron microscopy and field emission-transmission electron microscopy. Both permittivity and permeability were significantly improved for the conducting polymer-coated MWCNTs due to the intrinsic electrical properties of MWCNTs and the conducting properties of coated polymers. The electromagnetic waves were effectively absorbed based on the permittivity nature of conducting polymer and MWCNTs preventing the secondary interference from reflecting the electromagnetic waves. The highly improved EMI shielding efficiency was also obtained for the conducting polymer-coated MWCNTs showing the synergistic effects by combining MWCNTs and the conducting polymers.

Technical Trends of Flexible, Transparent Electromagnetic Interference Shielding Film (유연한 투명 전자기 간섭 차폐 필름의 기술개발 동향)

  • Lim, Hyun-Su;Oh, Jung-Min;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • Recently, semiconductor chips and electronic components are increasingly being used in IT devices such as wearable watches, autonomous vehicles, and smart phones. As a result, there is a growing concern about device malfunctions that may occur due to electromagnetic interference being entangled with each other. In particular, electromagnetic wave emissions from wearable or flexible smart devices have detrimental effects on human health. Therefore, flexible and transparent electromagnetic interference (EMI) shielding materials and films with high optical transmittance and outstanding shielding effectiveness have been gaining more attention. The EMI shielding films for flexible and transparent electronic devices must exhibit high shielding effectiveness, high optical transmittance, high flexibility, ultrathin and excellent durability. Meanwhile, in order to prepare this EMI shielding films, many materials have been developed, and results regarding excellent EMI shielding performance of a new materials such as carbon nano tube (CNT), graphene, Ag nano wire and MXene have recently been reported. Thus, in this paper, we review the latest research results to EMI shielding films for flexible and transparent device using the new materials.

Analysis of revised regulatory guidance on electromagnetic interference qualification for nuclear safety

  • In Beom Ahn;Jaeyul Choo ;Jae Yoon Park ;Hyunchul Ku ;Kyeong-Sik Min
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.870-875
    • /
    • 2023
  • In this paper, we analyzed the revised guidance on electromagnetic (EM) interference qualification of Regulatory Guide 1.180 (Revision 2), which is published by the U.S. Nuclear Regulatory Commission for electromagnetic compatibility qualification for nuclear safety, by comparing it with that of the previous version. We confirmed that the test methods and the acceptance criteria of both CE101 and CE102 tests for conductive emission and RE102 test for radiating emission are changed in the recently revised Regulatory Guide 1.180 (Revision 2). Furthermore, we found that the revised Regulatory Guide 1.180 provides flexibility in the use of alternative methods for EM interference (EMI) qualification, in that a mix of the various base-standards is technically allowed. In addition, the primary revision of the updated Regulatory. Guide 1.180 is that MIL-STD-461G is to be adopted as the latest base-standard, instead of MIL-STD-461E. To evaluate the influence on EMI qualification for nuclear safety due to the endorsement of MIL-STD-461G, we thoroughly analyzed the modifications in the acceptance criteria and test methods for EMI qualification, and then validated the analyzed effect on the EMI qualification, which is caused by the revision of MIL-STD-461, by performing electromagnetic simulation for equipment under RE102 test.