• Title/Summary/Keyword: Electromagnetic behavior

Search Result 187, Processing Time 0.026 seconds

Effects of Magnetic Powder Thickness on Electromagnetic Wave Absorption Characteristics in FeSiCr Flakes/Polymer Composite Sheets (FeSiCr 박편/폴리머 복합시트의 전자파 흡수 특성에 미치는 자성분말 두께의 영향)

  • Kim, Ju-Beom;Noh, Tae-Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.866-872
    • /
    • 2009
  • The effects of magnetic powder thickness on electromagnetic wave absorption characteristics in Fe-6.5Si-0.9Cr (wt%) alloy flakes/polymer composite sheets available for quasi-microwave band have been investigated. The atomized FeSiCr powders were milled by using attritor for 12, 24, and 36 h, powder thickness changed from $40{\mu}m$ to $3{\mu}m$ upon 36 h milling. The composite sheet, including thinned magnetic flakes, exhibited higher power loss in the GHz frequency range as compared with the sheets having thick flakes. Moreover, both the complex permeability and the loss factor increased with the decrease in thickness of the alloy flakes. Therefore, the enhanced power loss property of the sheets containing thin alloy flakes was attributed to the flakes of high complex permeability, especially their imaginary part. Additionally, the complex permittivity was also increased with the reduction of flake thickness, and this behavior was considered to be helpful for improvement of the electromagnetic wave absorption characteristics in the composite sheets, including thin alloy flakes.

Electromagnetic Force Calculation of Internet Winding Fault in A Distribution Power Transformer by using A Numerical Program (수치해석을 이용한 배전용 변압기 권선 고장시의 전자력 계산방법 연구)

  • Shin, Pan-Seok;Ha, Jung-Woo;Chung, Hee-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.60-67
    • /
    • 2007
  • In this paper, a simulation method of the internal winding fault is proposed to calculate winding current and electromagnetic force in a distribution power transformer by suing FEM program. The model of the transformer is a single phase, 60[Hz], 1[MVA], 22.9[kV]/220[V], cable-type winding. The short-circuit current and electromagnetic force are calculated by FEM(Finite Element Method) program(Flux2D) and the results we verified with theoretical formula and PSPICE program. The simulation results are fairly good agreement with the other verified methods within 5[%] error rate. The turn-to-turn short-circuit current is 500 times of the rated current and the electromagnetic force is about $20{\sim}200times$. The method presented in this study may serve as one of the useful tools in the electromagnetic force analysis of the transformer winding behavior under the short circuit condition for design of the structure.

Time-Domain Analysis of Wireless Power Transfer System Behavior Based on Coupled-Mode Theory

  • Shim, Hyunjin;Nam, Sangwook;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.219-224
    • /
    • 2016
  • In this paper, coupled-mode theory (CMT) is used to obtain a transient solution analytically for a wireless power transfer system (WPTS) when unit energy is applied to one of two resonators. The solutions are compared with those obtained using equivalent circuit-based analysis. The time-domain CMT is accurate only when resonant coils are weakly coupled and have large quality factors, and the reason for this inaccuracy is outlined. Even though the time-domain CMT solution does not describe the WPTS behavior precisely, it is accurate enough to allow for an understanding of the mechanism of energy exchange between two resonators qualitatively. Based on the time-domain CMT solution, the critical coupling coefficient is derived and a criterion is suggested for distinguishing inductive coupling and magnetic resonance coupling of the WPTS.

Electromagnetic actuator design for the control of light structures

  • Der Hagopian, Johan;Mahfoud, Jarir
    • Smart Structures and Systems
    • /
    • v.6 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • An ElectroMagnetic Actuator (EMA) is designed and assessed numerically and experimentally. The EMA has the advantage to be without contact with the structure so it could be applied to light and small mechanism. Nevertheless, the open-loop instability and the nonlinear dynamic behavior with respect to the excitation frequency could limit its application field. The EMA is designed and dimensioned as a function of the experimental structure to be controlled. An inverse model of the EMA is proposed in order to implement a linear action block for the used frequency range. The control strategy is a fuzzy controller with displacements and velocities as inputs. A fuzzy controller of Takagi-Sugeno type is used. The air gap is estimated by using a modal approximation of the displacements issued from all measurements. Several configurations of control are assessed by using numerical simulations. The block diagram used for numerical simulations is implemented under Dspace$^{(R)}$ environment. The implemented controller was tested experimentally in the context of impact perturbations. The results obtained show the effectiveness of the developed procedures and the robustness of the implemented control.

Effect of Aligned Steel Fibers by a Solenoid on Flexural Fracture Behavior (솔레노이드에 의해 정렬된 강섬유가 휨파괴 거동에 미치는 영향)

  • Gyu-Pil Lee;Do-Young Moon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.193-200
    • /
    • 2023
  • This paper investigates the effect of directional alignment of steel fibers using an electromagnetic field on the flexural fracture behavior of steel fiber reinforced concrete. A specially designed and manufactured solenoid, capable of aligning steel fibers in the longitudinal direction of the beam specimen, was employed for this purpose. Beam specimens with a design strength of 30 MPa were produced, and failure tests were conducted on specimens exposed to electromagnetic fields and those without exposure. Experimental variables included the mixing ratio and aspect ratio of steel fibers. The results of the experiments revealed a slight increase in flexural strength and crack mouth opening displacement at the maximum load for specimens exposed to the electromagnetic field. Notably, a significant enhancement in fracture energy was observed.

A Power Plane Using the Hybrid-Cell EBG Structure for the Suppression of GBN/SSN (GBN/SSN 억제를 위한 이종 셀 EBG 구조를 갖는 전원면)

  • Kim, Dong-Yeop;Joo, Sung-Ho;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.206-212
    • /
    • 2007
  • In this paper, a novel power/ground plane using the hybrid-cell electromagnetic band-gap(EBG) structure is proposed for the wide-band suppression of the ground bound noise(GBN) or simultaneous switching noise(SSN). The -30 dB stopband of the proposed structure starts from a few hundred MHz where the GBN/SSN energy is dominant. The distinctive features of this new structure are the thin spiral strip line and hybrid-cells. They realize the enhanced inductance and the shorter period of the EBG lattice. As a result, the lower cut-off frequency and bandwidth of the -30 dB stopband becomes lower and wider, respectively. In addition, the proposed structure has smaller number of resonance modes between power/ground planes and performs a low EMI behavior compared with the reference board.

Analysis of Crosstalk between PCB Traces in Frequency and Time Domain (주파수 및 시간 영역에서 인쇄회로기판 선로의 혼신 해석)

  • 이애경;심환우;조광윤
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.5
    • /
    • pp.430-439
    • /
    • 1996
  • In printed circuit board (PCB) design, it is necessary to predict the crosstalk effect among traces on the circuitary behavior. In this paper, crosstalk between parallel or crossing traces was treated by the finite difference time domain (FDTD) method. They are the typical models of PCB traces and the crosstalk is a major contributor in the creation of electromagnetic interference (EMI). The crosstalk effect was computed for the variation of distance spacing and length of parallel traces and crossing traces. The results in time and frequency domain are discussed and compared with those using MDS(microwave design system) and HFSS(high frequency structure simulator). The comparison shows that the FDTD method can be of wide application in analysis model and save the time required for calculation.

  • PDF

Laminating Rule for Predicting the Dielectric Properties of the E-glass/Epoxy Laminate Composite (유리섬유/에폭시 복합재료 적층판의 유전성질 예측을 위한 적층판 법칙)

  • Chin, Woo-Seok;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.141-145
    • /
    • 2005
  • Since the electromagnetic properties of fiber reinforced polymeric laminate composite can be tailored effectively by adjusting its composition and regulating the stacking sequence, it is plausible material for fabricating the radar absorbing structures (RAS) of desired performance. In order to design the effective electromagnetic wave (EM) absorber with the fiber reinforced polymeric laminate composite, its electromagnetic characteristics should be available and could be regulated easily in the target frequency bands. In this study, dielectric characteristics of the E-glass/epoxy laminate composites were measured by the free space method in the X-band frequency range ($8.2\;{\sim}\;12.4\;GHz$). In order to describe the dielectric behavior of laminate composites of arbitrary stacking sequences, the equivalent circuit model and the laminating equations for estimating dielectric properties were proposed, and experimentally verified. From the comparison of the predicted and measured data, the proposed method predicted well the experimentally measured data.

  • PDF

Safety of Electromagnetic Field Made by Intelligent Thermo-Acupuncture System (지능형온침자극기의 전자기장 측면의 안전성)

  • Yuk, Geun-Yeong;Lee, Seung-Ho;Kim, Young-Kon;Lim, Sa-Bi-Na
    • Korean Journal of Acupuncture
    • /
    • v.24 no.4
    • /
    • pp.69-84
    • /
    • 2007
  • Objectives : Intelligent thermo-acupuncture system (ITA-system) is invented for the convenient operation of thermo-acupuncture therapy. The aim of this study is to investigate the safety of 100 ㎑ electromagnetic field (EMF) made by ITA-system. Methods : We analysed the influence of this EMF on animals. In order to do experiment in the influence of EMF, male ICR mice were exposed to EMF at different distances from the ITA-system. And we examined weight, diet, behavior, organ and hematological changes. Results & Conclusions : According to the animal studies with mice about EMF influence, there was no significant difference between the control group and the exposed groups about them. In conclusion, the safety of 100 ㎑ EMF made from ITA-system through this animal research was checked.

  • PDF