• Title/Summary/Keyword: Electromagnetic Wave Propagation

Search Result 194, Processing Time 0.02 seconds

Calculation of Characteristics for Electromagnetic Waves Scattering in Discrete Non-uniform Media

  • Ka Min-Ho;Vazhenin N. A.;Volkovsky A.S.;Plokhikh A. P.
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.143-146
    • /
    • 2004
  • Signals of the short wave part of centimetre, millimetre and optic wave length ranges are being broadly used in the communication, location and remote sensing systems with space channels. In this case the presence of discrete non-uniform mediums like orbital debris, space dust and other discrete formations in the propagation channel may have substantial influence upon the characteristics of wave processes. and thus upon the data system quality. Mathematical models for studying the discrete non-uniform mediums effect on the characteristics of electromagnetic wave propagation are analyzed in this paper.

  • PDF

Analysis of Propagation Characteristics by Statistical Analysis in Domestic Atmospheric Environments (국내 대기 환경의 통계적 특성 분석을 통한 전파 특성 분석)

  • Choi, Moon-Young;Lee, Gil-Jae;Kim, Hyun-Soo;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.6
    • /
    • pp.698-705
    • /
    • 2008
  • When electromagnetic waves propagate through atmosphere, waves are affected by various factors. Atmosphere normally consists of different molecular species, water vapours, rain, fog, snow and small suspended particles called aerosols. The distributions of atmosphere molecules, water vapours, rain rate, snowfall and aerosol are dependent on geometrical regions or environment. In order to predict propagation characteristics in atmospheric environment, statistical analysis of the relevant parameters such as temperature, humidity, atmospheric pressure, wind speed, areosol and rainfall is crucial. In this paper, we performed a long-term statistical analysis for the atmospheric parameters in domestic environments and analyzed the propagation characteristics through atmosphere based on that.

Mathematical Modeling of Wave Propagation Considering the Atmospheric Effects and Its Application (대기 효과를 고려한 전파 전달의 수학적 모델링 및 응용)

  • Lee, Taeseung;Choi, Sanghyouk;Chun, Joohwan;Kang, Seongcheol;Park, Dongmin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.188-197
    • /
    • 2016
  • In this paper, we propose a method that represents a mathematical form of wave propagation by using the fact the refractive index determining wave propagation characteristic is a function of altitude. Proposed method uses Snell's law that expresses relationship between incident angle and refraction angle when incident wave passes medium having a different refractive index. We present the simulation results about wave propagation by setting the square of refractive index in the form of the polynomial for altitude and show that it is possible to estimate the coefficients of the polynomial through the angle information from vertical axis of multiple radar systems.

Discrete Ray Tracing Techniques for Wave Propagation Characteristic of Random Rough Surfaces (불규칙 조면의 전파 특성 해석을 위한 이산 광선 추적법)

  • Yoon, Kwang-Yeol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.233-238
    • /
    • 2010
  • In this paper, we have proposed discrete ray tracing method (DRTM) for numerical analysis of characteristics of electromagnetic propagation along 2D random rough surfaces. The point of the present method is to discretize not only rough surface but also ray tracing. The former helps saving computer memories and the latter does simplifying ray searching algorithm resulting in saving computation time. Numerical calculations are carried out for 2D random rough surfaces, and electric field distributions are shown to check the effectiveness of the proposed DRTM.

Application of Modeling of Electromagnetic Wave Propagation for Thickness Determination Using Finite Difference-Time Domain (유한차분 시간영역법을 이용한 콘크리트 두께측정 전자파 모델링의 적용)

  • 임홍철;남국광
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.341-349
    • /
    • 2002
  • The radar method is becoming one of the major nondestructive testing(NDT) techniques lot concrete structures. Numerical modeling of electromagnetic wane is needed to analyze radar measurement results. Finite difference-time domain(FD-TD) method can be used to simulate electromagnetic wave propagation through concrete specimens. Five concrete specimens with different thickness are modeled in 3-dimension. Radar modeling results compare measurement results to find backface of the concrete specimens and measure thickness of the concrete specimens.

Propagation Characteristics of Ultra High Frequency Partial Discharge Signals in Power Transformer (전력용변압기에서 UHF 부분방전 신호의 전파 특성)

  • Yoon, Jin-Yul;Han, Ki-Son;Ju, Hyung-Jun;Goo, Sun-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.798-803
    • /
    • 2010
  • This paper describes the characteristics of electromagnetic wave propagation in power transformer. A transformer which is similar to 154 kV single phase on-site transformer unit was provided for the purpose of the experiment. The 12 dielectric windows on the transformer enclosure to install UHF (ultra high frequency) sensors and the full scale mock ups of winding and the core were also equipped in the transformer. Every sensors to be installed to the transformer was tested and verified whether they show same characteristics or not before the experiment. A discharge gap which was used as a PD (partial discharge) source moved to several necessary locations in the transformer to simulate dielectric defects. Propagation times of electromagnetic wave signal from PD source to sensors decided by the routes of both reflection phenomenon and diffraction phenomenon were compared each other. The experimental results showed propagation route of the PD signal makes an effect on the frequency spectrum of front part of the signal and the magnitude of the signal and propagation time of the signal when the signal is captured on the sensor.

Finite Element Analysis on the Characteristics of Electromagnetic Wave Propagation in Lossy Tunnel (유한요소법을 사용한 손실터널내의 전자파 전파특성 해석)

  • 문정익;안창회;김기채
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.621-629
    • /
    • 1998
  • Propagation characteristics of electromagnetic waves in lossy tunnels are analysed using Finite Element Method with edge basis function. According to the analysis lossy dielectric wall on the tunnel highly affects the characteristics of the waves in the tunnel. Also higer modes are separated using mode orthogonality principle, and the propagation characteristics of higer modes are investigated. To verity the numerical results, miniatures of the tunnels are constructed and measurements of the waves are accomplished.

  • PDF

Application on the Modeling Rusults of GPR Wave Propagation through Concrete Specimens for Rebar Detection In Concrete Specimens (전자파 모델링을 이용한 콘크리트 내 철근탐사)

  • 남국광;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.135-140
    • /
    • 2001
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. In the experiments, three concrete specimens are made with the dimensions of 100 cm (length) x 100 cm (wideth) x 14 cm (depth). Three specimens had a Dl6 steel bar at 8, 10, 12 cm depth.

  • PDF

Optimizing Simulation of Wireless Networks Location for WiBRO Based on Wave Prediction Model (전파 예측 모델에 의한 와이브로 무선망 위치 선정의 최적화 시뮬레이션)

  • Roh, Su-Sung;Lee, Chil-Gee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.587-596
    • /
    • 2008
  • For Wireless internet service in Metropolitan area, optimum location selection for base station and cell planning are critical process in determining service coverage by accurate prediction of Wave Propagation Characteristics. Due to different kinds of characteristics in service area such as lay of land, natural feature and material, height and width of artificially made building, it has a great impact on the transmission and distance recovery of wireless network service. Therefore, these facts may cause substantial barriers in predicting & analyzing the expected level of service quality and providing it to subscribers. In this thesis, we have simulated the process to improve quality and coverage of the service by adjusting the location of Base station and the antenna angle that influence the service after the basic location of base station is selected according to the wave prediction model. Based on this simulations test, we have demonstrated the results in which subscribers would get higher quality of wireless internet service along with bigger coverage and the improved quality in the same service coverage area through optimization process of base station.

Three Dimensional Ray Tracing Based Indoor Propagation Model Using Triangulated Surfaces (실내 전파 특성 계산을 위한 삼각형 모델 기반의 3차원 광선 추적법)

  • Song, Jae-Young;Lee, Haeng-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.733-740
    • /
    • 2008
  • In this paper, an indoor propagation model based on 3d ray tracing is presented for wireless communications. In case of indoor propagation models, various radio propagation paths such as wall-transmitted wave and scattered wave from ceilings, pillars, and furnitures arises and 3-D formulation is needed. To accommodate such scatterers, objects are modeled by triangulated surfaces and ray tubes using those surfaces are introduced and efficient calculation methods using the tubes are presented.