• Title/Summary/Keyword: Electromagnetic Scattering

Search Result 371, Processing Time 0.029 seconds

Experiments of bragg and off-bragg blazing phenomena by strip grting over a grounded dielectric slab for TE polarization case (접지된 유전체판 위에 위치한 스트립 격자에 TE편파된 평면파가 입사되는 경우에서의 bragg 및 off-bragg balzing 현상-실험)

  • Baek, W.S.;Cho, U.H.;Lee, C.H.;Cho, Y.K.;Son, H.
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.5
    • /
    • pp.1-6
    • /
    • 1997
  • An analysis method for the electromagnetic scattering of a tE polarized plane wave from a periodic strip grating over a grounded dielectric slab is consisered from the viewpoint of reflectio ngraing problem. The strip gratings showing bragg and off-bragg balzing phenomena at the frequency of 10GHz are designed, respectively. The strip grating structure is implemented using aluminum plate (hround conductor), paraffin(dielectric material ; .xi.$_{\gamma}$=2.24) and copper (strip conductor ; 0.08mm thickness). The experimental results (reflection power) for bragg as well as off-bragg blazing phenomenon have been compared with the theoretical results and fairly good agreements between theory and experiment have been observed.ed.

  • PDF

Performance Analysis of CSMA/CD in Radio Environment with Capture Effect (무선환경에서 포획효과를 고려한 CSMA/CD 프로토콜의 성능분석)

  • Sa, Ju-Hee;Hyun, In-Bok;Kwak, Kyung-Sup
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.73-82
    • /
    • 1997
  • In this paper we analyzed, using Markov modeling, the performance of CSMA/CD over the wireless channel which is characterized by near-far effect, shadowing and Rayleigh fading. The analysis shows that throughput of CSMA/CD is degraded by channel error. However, if capture effect which arises from the randomness of power level of received signal due to the fading phenomena of electromagnetic waves is taken into consideration, the system performance is much improved and the system stability is also made better.

  • PDF

A Study on the Type of Light in Fashion Design (패션디자인에 활용된 빛의 유형 분석)

  • Jung, Hyun;Geum, Key-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.2
    • /
    • pp.120-133
    • /
    • 2008
  • The purpose of this study is to analysis types of light and to find the characteristics of light in contemporary fashion design. In a scientific context, light is electromagnetic radiation of a wavelength that has the characteristics of straightness, reflection, refraction, scattering and diffraction. But in philosophical speculations, light has been used as a metaphor of 'being', 'to-be' or 'enlightenment.' And through the ages, people have tried to represent and apply the light into plastic art like painting and architecture. The types of light in fashion design was categorized as those; reflective light from the surface of clothing which is the result of interaction between illumination and material, representative light as the pattern of light or light effect such as sun or its rays and optical or psychedelic patterns, luminescent light from light emitting material like phosphorescence or LED which combines into fashion design, projective light from a medium to reveal virtual patterns on the surface or a fashion design itself using holography. These lights in fashion design can be considered as reflection of emphasis of sexuality, longing for fantasy and mystique, visualization of interaction and communication and groping for the play.

Analysis of Induced Currents on the Dielectric Cube by the Fusion of MoM and PMCHW Integral Equation (MoM과 PMCHW 적분방정식 융합에 의한 유전체 육면체의 유도전류 계산)

  • Lim, Joong-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.5
    • /
    • pp.9-14
    • /
    • 2015
  • In this paper, we analysis the electromagnetic scattering of an arbitrary shape dielectric cube subjected to plane wave incidence in three dimensions. MoM(Method of Moments)in which a surface of a body is divided with small triangular patches and equivalence principle are used to fuse the PMCHW(Poggio, Miller, Chang, Harrington, and Wu) Integral Equations with respect to equivalent currents on a dielectric body. Triangular patch and loop-patch basis functions that is robust in wide frequency ranges are used for MoM formulations. Proposed method is very useful to analysis the induced current of arbitrary dielectric bodies and numerical results for a dielectric cube are presented.

Fracture characterization with high frequency single-hole EM survey

  • Seo, Soon-Jee;Song, Yoon-Ho;Kim, Hee-Joon;Lee, Ki-Ha;Suh, Jung-Hee
    • Proceedings of the KSEEG Conference
    • /
    • 1999.04a
    • /
    • pp.90-93
    • /
    • 1999
  • We present a high frequency electromagnetic (EM) inversion scheme for detecting and characterizing a fracture using single-hole data. At high frequencies, say above tens of mega-hertz, since displacement currents cannot be ignored, electrical permittivity as well as electrical conductivity is to be considered together for analyzing the EM scattering data. In this paper, we have developed a three-step inversion scheme to map the fracture and to evaluate its electrical conductivity and permittivity. We performed EM profiling along the z-axis using three-component receivers for each source. The model was excited by a vertical magnetic dipole and the resistant magnetic fields were inverted using the non-linear least-squares method. Background resistivity and permittivity were easily obtained using vertical magnetic fields below 1 MHz and above 10 MHz, respectively. Both the vertical and dipping sheets were successfully mapped using the phase difference between 40 and 41 MHz. The electrical property of the sheet was well resolved using the information obtained in the previous two steps and secondary magnetic fields. Our study shows the potential of imaging the fracture in single-hole survey environment using the high frequency EM method.

  • PDF

Investigation of Temperature Dependence for CNT Semiconductor in External Magnetic Field (외부 자기장내의 반도체 CNT의 온도의존 조사)

  • Park, Jung-Il;Lee, Haeng-Ki
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.73-78
    • /
    • 2012
  • We calculated the electron spin resonance (ESR) line-profile function. The line-width of single-walled carbon nanotube (SWNT) was studied as a function of the temperature at a frequency of 9.5 GHz in the presence of external electromagnetic radiation. The temperature dependence of the line-widths is obtained with the projection operator method (POM) proposed by Argyres and Sigel. The scattering is little affected in the low-temperature region (T < 200 K). We conclude that the calculation process presented in this method is useful for optical transitions in SWNT.

Design of the Frequency Selective Surface with Transformation of Linear-to-circular Polarization (원편파 변환 주파수 선택 반사기 설계)

  • Ko, Ji-Whan;Cho, Young-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • The new periodic array structure or frequency selective surface with polarizers characteristic is proposed. The present structure is constructed with two sheets or FSS material, spaced about one-eight wavelength apart, the dipole element orientations of the two sheets being almost perpendicular to each other. The methods of the spectral domain immittance and MoM are used to analyze electromagnetic scattering from this periodic array structure. To confirm the validity of the polrizer's functions or the new periodic array structure, frequency selective surfaces are fabricated, calculated values for the frequency response of the reflection and transmission loss are compared with measured values. Good correspondence has been observed between them. Good axial ratio has been also observed to be achieved in the proposed structure.

  • PDF

Analysis of the strip type waveguide mount backed by the dielectric substrate (유전체 기판 위에 놓인 스트립 형태의 도파관 마운트 해석)

  • 박면주;한석태;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.9
    • /
    • pp.2505-2513
    • /
    • 1996
  • This paper presents the analysis of the impedance characteristic of the strip type waveguide mount backed by the dielectric substrate using mode the matching and induced EMF method. The part of the waveguide containing the dielectric substrate is modeled as waveguide partially filled with the dielectric, and a hybrid mode analysis has been conducted for the structure. The electromagnetic scattering problem by the dielectric substrate is solved by the mode matching method using the calculated modal function. The input impedance seen at the mount gap is calculated by the induced EMF method using the calculated results. the calculated results thus obtained has been verified through comparison with the results by other numerical methods. The effect of some structure parameters such as the width of the substrate and the gap size on the mount impedance is investigated.

  • PDF

Incorporation of Electromagnetic Ion cyclotron waveinto Radiation Belt environment model

  • Kang, Suk-Bin;Choi, Eunjin;Hwang, Junga;Kim, Kyung-Chan;Lee, Jaejin;Fok, Mei-ching;Min, Kyoungwook;Choi, Cheongrim;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.132.1-132.1
    • /
    • 2012
  • Radiation Belt Environment (RBE) model has developed to understand radiation belt dynamics as it considers whistler mode hiss and chorus waves which is responsible for relativistic electron acceleration and precipitation. Recently, many studies on electron loss by pitch-angle scattering have reported that elctromagnetic ion cyclotron (EMIC) wave is also responsible for main loss mechanism in dusk and equatorial regeion. Here, we attempt to incorporate EMIC into RBE model simulation code to understand more detailed physical dynamics in Radiation belt environemnt. We compare this developed model to data during storm events where both of electron loss and EMIC waves were detected.

  • PDF

Time-Delay and Amplitude Modified BP Imaging Algorithm of Multiple Targets for UWB Through-the-Wall Radar Imaging

  • Zhang, Huamei;Li, Dongdong;Zhao, Jinlong;Wang, Haitao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.677-688
    • /
    • 2017
  • In order to solve the undetected probability of multiple targets in ultra-wideband (UWB) through-the-wall radar imaging (TWRI), a time-delay and amplitude modified back projection (BP) algorithm is proposed. The refraction point is found by Fermat's principle in the presence of a wall, and the time-delay is correctly compensated. On this basis, transmission loss of the electromagnetic wave, the absorption loss of the refraction wave, and the diffusion loss of the spherical wave are analyzed in detail. Amplitude compensation is deduced and tested on a model with a single-layer wall. The simulating results by finite difference time domain (FDTD) show that it is effective in increasing the scattering intensity of the targets behind the wall. Compensation for the diffusion loss in the spherical wave also plays a main role. Additionally, the two-layer wall model is simulated. Then, the calculating time and the imaging quality are compared between a single-layer wall model and a two-layer wall model. The results illustrate the performance of the time-delay and amplitude-modified BP algorithm with multiple targets and multiple-layer walls of UWB TWRI.