• Title/Summary/Keyword: Electromagnetic Resistance

Search Result 264, Processing Time 0.033 seconds

Design and Analysis of a Vibration-Driven Electromagnetic Energy Harvester Using Multi-Pole Magnet

  • Munaz, Ahmed;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.172-179
    • /
    • 2012
  • This paper presents the design and analysis of a vibration-driven electromagnetic energy harvester that uses a multi-pole magnet. The physical backgrounds of the vibration electromagnetic energy harvester are reported, and an ANSYS finite element analysis simulation has been used to determine the different alignments of the magnetic pole array with their flux lines and density. The basic working principles for a single and multi-pole magnet are illustrated and the proposed harvester has been presented in a schematic diagram. Mechanical parameters such as input frequency, maximum displacement, number of coil turns, and load resistance have been analyzed to obtain an optimized output power for the harvester through theoretical study. The paper reports a maximum of 1.005 mW of power with a load resistance of $1.9k{\Omega}$ for 5 magnets with 450 coil turns.

Design of Active Bandpass Filter Considering The Amplitude Flatness of Passband (대역 내 진폭 특성의 평탄도를 고려한 4단 능동 대역통과 여파기 설계)

  • Bang, Inn-Dae
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.638-648
    • /
    • 2003
  • An active capacitance circuit is analyzed in depth and its application to active RF BPF with low noise figure is discussed. The characteristics of the active capacitance circuit made of FET[1] exhibits negative resistance and conventional capacitance, which is easily controlled. However, it is difficult to make the negative resistance adequate in the designated frequency range due to the lack of detailed analysis, which could make an active circuit unstable as the frequency is going higher or lower. In this paper, we analyzed the negative resistance characteristics of active capacitance circuits and also presented the method that the flatness of passband can be controlled. Finally we have designed a 4-stage active BPE, which results in bandwidth of 100 MHz, 0,04 dB insertion loss, 0.2 dB ripple, and noise figure of 2.4 dB at 1.75 GHz band.

  • PDF

Design and Fabrication of a Low Frequency Vibration Driven High-Efficiency Electromagnetic Energy Harvester (저 주파수용 FR-4 스프링 기반 고효율 진동형 전자기식 에너지 하베스터의 설계 및 제작)

  • Lee, Byung-Chul;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.298-302
    • /
    • 2012
  • This paper describes the design and fabrication of a low frequency vibration driven high-efficiency electromagnetic energy harvester based on FR(Flame Resistance)-4 spring which converts mechanical energy into useful electrical power. The fabricated generator consists of a vertically polarized NdFeB permanent magnet attached to the center of spring and a planar type copper coil which has higher efficiency compare with cylindrical type coil. ANSYS finite analysis and Matlab were used to determine the resonance frequency and output power. The generator is capable of producing up to 1.36 $V_{pp}$ at 9 Hz, which has the maximum power of 639 ${\mu}W$ with a load resistance of $3.25k{\Omega}$.

Design and Analyses of Vibration Driven Electromagnetic Energy Harvester with High Power Generation at Low Frequency (저주파수에서 고출력을 갖는 진동형 전자기식 에너지 하베스터의 설계 및 해석)

  • Chung, Gwiy-Sang;Ryu, Kyeong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • This paper describes the design and analyses of vibration driven electromagnetic energy harvester with high power generation which is suitable for supplying power generator from human body motion. The proposed harvester consists of magnet, coil, and SM (Soft magnetic Material). In order to generate more induced voltage, the SM to concentrate flux lines from end of magnetic poles was arranged into insert moving magnet. Each model was designed and analyzed by using ANSYS software to simulation. The maximum power is generated when load resistance of $1303\;{\Omega}$ is equal to coil resistance. The generated maximum power of for harvesters with SM is $677.85\;{\mu}W$ and 5.46 times higher than without SM at 6 Hz vibration frequency.

A Numerical Study on the Internal Flow Characteristics and Pumping Performance of a Piezoelectric-based Micropump with Electromagnetic Resistance (전자기 저항을 이용한 압전 구동방식 마이크로 펌프의 내부유동 특성과 펌핑성능에 대한 수치해석적 연구)

  • An, Yong-Jun;Oh, Se-Hong;Kim, Chang-Nyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.84-92
    • /
    • 2010
  • In this study a numerical analysis has been conducted for the flow characteristics and pumping performance of a piezoelectric-based micropump with electromagnetic resistance exerted on electrically conducting fluid. Here, electromagnetic resistance is alternately applied at the inlet and outlet with alternately applied magnetic fields in association with the reciprocal membrane motion of the piezoelectric-based micropump. A model of Prescribed Deformation is used for the description of the membrane motion. The internal flow characteristics and pumping performance are investigated with the variation of magnetic flux density, tube size, displacement of membrane and the frequency of the membrane. It turns out that the current micropump has a wide range of pumping flow rate compared with diffuser-nozzle based micropumps.

A Laterally-Driven Bistable Electromagnetic Microrelay

  • Ko, Jong-Soo;Lee, Min-Gon;Han, Jeong-Sam;Go, Jeung-Sang;Shin, Bo-Sung;Lee, Dae-Sik
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.389-392
    • /
    • 2006
  • In this letter, a laterally-driven bistable electromagnetic microrelay is designed, fabricated, and tested. The proposed microrelay consists of a pair of arch-shaped leaf springs, a shuttle, and a contact bar made from silicon, low temperature oxide (LTO), and gold composite materials. Silicon-on-insulator wafers are used for electrical isolation and releasing of the moving microstructures. The high-aspect-ratio microstructures are fabricated using a deep reactive ion etching (DRIE) process. The tandem-typed leaf springs with a silicon/gold composite layer enhance the mechanical performances while reducing the electrical resistance. A permanent magnet is attached at the bottom of the silicon substrate, resulting in the generation of an external magnetic field in the direction vertical to the surface of the silicon substrate. The leaf springs show bistable characteristics. The resistance of the pair of leaf springs was $7.5\;{\Omega}$, and the contact resistance was $7.7\;{\Omega}$. The relay was operated at ${\pm}0.12\;V$.

  • PDF

Property analysis of electromagnetic fields radiated by electrostatic discharge (정전기 방전에 의한 전자계 복사의 특성 해석)

  • ;Osamu Fujiwara
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.1-7
    • /
    • 1997
  • Serious troubles may occur in electromagnetic equipments due to electrostatic discharge (ESD). The number of the damaging incidents are significantly increasing with the increased use of integrated semiconductor elements with loer operation pwoer. In order to examine the phenomena theoretically, this paper anlyzes properties of the transient electromagnetic fields rdiated by ESD. A new model is presented using the Rompe-weizel formula for the spark resistance. The numerical results of ESD fields are compared with the experimental data that were given by wilson-Ma.

  • PDF

Design and Fabrication of Oscillator Improving Q of Inductor Using Negative Resistance (부성저항을 이용한 인덕터의 Q값 개선과 이를 이용한 발진기의 설계 및 제작)

  • 권순철;윤영섭;류원열;최현철
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.218-221
    • /
    • 2001
  • In this paper, High Q Inductor using negative resistance circuit and the ceramic inductor was designed and fabricated at 2GHz. It was Improved the inductor of Q=90 using a inductor with Q=30 added to negative resistance circuit at 2GHz. As a result, at the bias condition of 3V and 16mA, the output power and phase noise in the operation frequency 2.01GHz are 5dBm and -115.34dBc/Hz at 100kHz offset from carrier, respectively. Phase noise was improved -10dBc/Hz at 100kHz offset compared to only using ceremic inductor.

  • PDF

The Comparison on Grounding Characteristics for 3 Grounding Systems (3가지 접지방식에 대한 접지특성비교)

  • Shin, Dong-Ho;Kim, Yong;Baek, Soo-Hyun;Lee, Eun-Young;Kim, Pill-Soo;Cho, Dae-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.6
    • /
    • pp.289-297
    • /
    • 2000
  • This paper presents a comparison on the resistance and characteristics of transient response of grounding systems under surge currents using frequency domain electromagnetic field analysis software package and field test. Analysis is done by computer model, based on electromagnetic field theory approach, that accurately takes into account frequency dependent characteristics of the system. The transient performance of three grounding systems is analyzed by comparison of frequency dependent impedance and the maximal transient GPR. A double exponential lighting surge current is injected at one corner of the grounding systems. The transient GPRs a rod grounding systems are higher than mesh or electrolytic grounding systems. Af field test, the results of resistance measurement and time-variant of ground resistance slightly reduce electorlytic grounding systems less than rod and mesh grounding systems.

  • PDF

Design of X-Y Actuator with High Vibration Resistance lot Probe-based Data Storages (탐침형 정보저장장치용 이차원 구동기의 내진 구조)

  • Lee, Kyoung-Il;Kim, Seong-Hyun;Cho, Jin-Woo;Choi, Young-Jin;Shin, Jin-Koo
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.195-196
    • /
    • 2005
  • We report the new design of a miniature electromagnetic actuator for probe-based data storage with anti-vibration mechanism. The actuator consists of a media substrate, silicon frame, 2 pairs of magnets, a spacer, and a printed circuit board (PCB). The total area of the device is $11.2{\times}11.2 mm^2$ while the data recording area is $7.4{\times}7.4 mm^2$. A net momentum fee structure was included for high vibration resistance. The simulation shows that the lateral vibration can be reduced to below 100 nm for 1 G acceleration if the counter mass is adjusted with $1\%$ difference. The peak power for ${\pm}50 {\mu}m$ displacement is below 50 mW for a actuator with a resonance at 200 Hz.

  • PDF