• Title/Summary/Keyword: Electromagnetic Absorbing Structure

Search Result 46, Processing Time 0.028 seconds

Analysis of Annular Corrugated Horn using FDTD (환상 골진 혼 안테나의 FDTD에 의한 해석)

  • 김도현;손병문;구연건
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.7
    • /
    • pp.1067-1075
    • /
    • 2001
  • The fields at the aperture of conical horn antenna with corrugations parallel to the axis have been analyzed using FDTD(Finite Difference Time Domain). Easy calculation depending on the change of the structure of antenna and time reduction can be achieved by 2-D FDTD coding with the first-order Mur ABC(absorbing boundary condition). It is confirmed that the corrugation can reduce phase difference of field on aperture. also it is investigated that the directivity is increased by 6.1 %, 12.9%, and 28.4% with one corrugation, two corrugations, three corrugations, respectively. It is also found that the improvement of the characteristics of the antenna is not proportional to the number of the corrugation but more dependent on the location of the corrugation near the aperture than that far the aperture.

  • PDF

An analysis of electromagnetic wave properties of the leaky coaxial cable using the finite difference time domain algorithm(FDTD) (FDTD 알고리즘을 이용한 누설 동축 케이브르이 전파 특성 해석)

  • 홍용인;손동인;김태원;김정기;남호석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.94-101
    • /
    • 1996
  • The purpose of this paper is to analyze the field distribution and the current distribution of leaky coaxial cable with the finite difference-tiem domain(FDTD) algorithm. finite difference equations of maxwell's equations are defined in cylindrical coordinate systems. To simulate the unbounded problem like a free space, the Mur's absorbing boundary conditon is also used. After modeling the leaky coaxial cable with the three dimensional grid structure, the transient resoponse of th efield distribution and the current distribution are depicted in the time domain.

  • PDF

Analysis of microstrip patch array antenna characteristics using finite difference time domain algorithm (유한차분시간영역 알고리듬을 이용한 마이크로스트립 패치 배열 안테나 특성해석)

  • 홍용인
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.2 no.2
    • /
    • pp.197-205
    • /
    • 1998
  • The purpose of this paper is to analyze the electromagnetic field characteristics of array antenna with the finite difference-time domain algorithm. Finite difference equations of Maxwell's equations are defined in cylindrical coordinate systems. To simulate the unbounded problem like a free space, the Mur's absorbing boundary condition is also used. After modeling the array antenna with the grid structure, the transient response of the field distribution is depicted in the time domain.

  • PDF

Analysis of relative displacement of electromagnetic suspension using CARSIM and Simulink (CARSIM- Simulink연동 해석을 이용한 전자기 현가장치의 상대변위 해석)

  • Kim, Ji-Hye;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.82-88
    • /
    • 2018
  • This study investigated the structure of an 8-pole 8-slot linear generator, which acts as an electromagnetic damper by combining the structure of an electromagnetic suspension device capable of generating electrical energy through energy harvesting by absorbing the vibration energy from the road surface while driving. To compare the energy harvesting effect of the electromagnetic suspension according to the actual road surface, a driving road test was simulated for two actual road conditions, an asphalt road surface and unpacked road surface condition, using a civilian combined vehicle model in conjunction with a vehicle simulation program, Carsim and Simulink. As a result, the relative displacements of the suspensions on the asphalt road surface and the unpaved road were 8 mm and 13 mm, respectively. By applying the suspension displacement value derived by modeling the linear generator coupled to the electromagnetic suspension, the simulation was then performed for an analysis time of 0.3s by applying the same analytical conditions using the commercial electromagnetic analysis program, ANSYS MAXWELL, The average power generation on the unpacked roads and asphalt roads was 198.6W and 98.7W respectively, which was 103.7% higher for unpackaged roads. Finally, to compare the sensitivity of the road surface frequency and the suspension input displacement to the power generation output, the sensitivity of the two variables was 1.725 and 1.283, respectively, and the road surface frequency had a 34.5% higher effect on the average power generation.

A Study on Stealth Design for Exterior Equipment Arrangement Considering the Multi-Bounce Effect (다중반사를 고려한 함정의 외부 탑재 장비 최적배치 연구)

  • Hwang, Joon-Tae;Hong, Suk-Yoon;Kwon, Hyun-Wung;Kim, Jong-Chul;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.918-925
    • /
    • 2017
  • Multiple reflections on exterior equipment with complex shape on naval ships cause unexpectedly high Radar Cross Section (RCS) distributions, and the directions of reradiated electromagnetic waves are hard to predict. Therefore, the optimum arrangement of exterior equipments should be considered according to the Radar Absorbing Structure (RAS) method. In this paper, the optimum arrangement for exterior equipments was determined to reduce multiple reflections and RCS even with complex shapes. The sequential descending arrangement method was used to establish an optimum arrangement algorithm. An LCS-2 type model was selected for optimum exterior equipment arrangements. In order to reduce computational cost, RCS distributions and multiple reflection path analysis of exterior equipments was carried out to select exterior equipments for optimum arrangement, and an optimum arrangement was determined to find positions with minimum RCS values. Also, the RCS reduction effect was analyzed using detectable radar range.

Effects of Size and Permittivity of Rat Brain on SAR Values at 900 MHz and 1,800 MHz

  • Hyun Jong-Chul;Oh Yi-Sok
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • The objective of this study is to evaluate the effects of size and permittivity on the specific absorption rate(SAR) values of rat brains during microwave exposure at mobile phone frequency bands. A finite difference time domain (FDTD) technique with perfect matching layer(PML) absorbing boundaries is used for this evaluation process. A color coded digital image of the Sprague Dawley(SD) rat based on magnetic resonance imaging(MRI) is used in FDTD calculation with appropriate permittivity values corresponding to different tissues for 3, 4, 7, and 10 week old rats. This study is comprised of three major parts. First, the rat model structure is scaled uniformly, i.e., the rat size is increased without change in permittivity. The simulated SAR values are compared with other experimental and numerical results. Second, the effect of permittivity on SAR values is examined by simulating the microwave exposure on rat brains with various permittivity values for a fixed rat size. Finally, the SAR distributions in depth, and the brain-averaged SAR and brain 1 voxel peak SAR values are computed during the microwave exposure on a rat model structure when both size and permittivity have varied corresponding to different ages ranging from 3 to 10 weeks. At 900 MHz, the simulation results show that the brain-averaged SAR values decreased by about 54 % for size variation from the 3 week to the 10 week-old rat model, while the SAR values decreased only by about 16 % for permittivity variation. It is found that the brain averaged SAR values decreased by about 63 % when the variations in size and permittivity are taken together. At 1,800 MHz, the brain-averaged SAR value is decreased by 200 % for size variation, 9.7 % for permittivity variation, and 207 % for both size and permittivity variations.

A Study on Frequency and the Physical Properties of Ni-Cu-Zn Ferrites with the Variation of Ni Addition and Temperature Prepared by Co-Precipitation Method (공침법으로 제조한 Ni-Cu-Zn Ferrite의 Ni 첨가량과 온도에 따른 주파수 및 물리적 특성 연구)

  • Kim, Moon-Suk;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.5
    • /
    • pp.282-286
    • /
    • 2005
  • Ni-Cu-Zn ferrites were prepared by the co-precipitation and ferrite microwave absorbers on low temperature sintering were investigated in this work. The properties of its microwave absorbing and physical were analyzed into variations of Ni addition, calcination temperature, sintering temperature. From the analysis of X-ray diffraction patterns, we can see that all the particles have only a single phase spinel structure. In addition, the powders particle size distribution obtained the nano size. By increasing the Ni additive, the permeability of the powders was decreased and the loss factor increased at sintering temperature $1100^{\circ}C$. Also, we considered that it can used high frequency rage. We found that the $(Ni_{0.7}Cu_{0.2}Zn_{0.1}O)_{1.02}(Fe_{2}O_3)_{0.98}$ appeared microwave absorbing properties better than other composition.

FEM Analysis of Conduction Noise Absorbers in Microstrip Line (마이크로스트립 라인에서 유한요소법을 이용한 전도노이즈 흡수체의 성능해석)

  • Kim, Sun-Tae;Kim, Sun-Hong;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.242-245
    • /
    • 2007
  • Conduction noise attenuation by composite sheets of high magnetic and dielectric loss has been analyzed by using electromagnetic field simulator which employs finite element method. The simulation model consists of microstrip line with planar input/output ports and noise absorbers (magnetic composite sheets containing iron flake particles as absorbent fillers). Reflection and transmission parameters $(S_{11}\;and\;S_{21})$ and power loss are calculated as a function of frequency with variation of sheet size and thickness. The simulated value is in good agreement with measured one and it is demonstrated that the proposed simulation technique can be effectively used in the design and characterization of noise absorbing materials in the RF transmission lines.

A Study on Development of the Hybrid Shock Absorber for Lunar Lander (달 착륙선 하이브리드 충격 흡수장치의 개발에 관한 연구)

  • Lee, Jaehyeong;Hwang, Jai-hyuk;Bae, Jae-sung;Lim, Jaehyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.81-86
    • /
    • 2012
  • The shock absorber is very important in various mechanical field. Without the shock absorber, the structure might be broken. For lunar lander, honeycomb shock absorber to absorber the shock by using plastic deformation of honeycomb has been used. It is cheap and simple to use but impossible using again without changing the honeycomb. The oleo-pneumatic type shock absorber is not able to use in the cosmos because it is vacuum and its temperature. This study suggests the hybrid shock absorber combined spring-ratchet mechanical shock absorber and eddy current electromagnetic damper. The ratchet restricts rebound of lunar lander and the spring converts the impact energy to the potential energy of the spring. The eddy current damper dissipates the impact energy by eddy current force without contact between the parts. This hybrid shock absorber is reusable while the honeycomb shock absorber isn't. The impact absorbing test of the hybrid shock absorber was carried out. This paper shows that the compared results the hybrid shock absorber with ratchet and without ratchet and evaluates the possibility of using for lunar lander.

  • PDF

Method of Analyzing the ISAR image of Electrically Large Objects Partially Coated with RAM Using PO Technique (PO 기법을 이용한 부분 코팅된 전기적 대형물체의 ISAR 해석 방법)

  • Noh, Yeong-Hoon;Kim, Woobin;Yook, Jong-Gwan;Hong, Ic-Pyo;Kim, Yoon-Jae;Oh, Wonseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.328-336
    • /
    • 2020
  • This paper presents an asymptotic analysis method using the PO(physical optics) approximation technique to analyze the scattering contribution of an electrically large object partially coated with a radar absorbing material(RAM). By using the feature of the PO technique that can calculate the equivalent current value for each mesh independently, instead of analyzing the entire structure, scattering analysis was performed only by calculating the current on the area where the RAM coating is applied. By the numerical examples, the accuracy and the computation time of the proposed method were verified, and the computational efficiency of inverse synthetic aperture radar(ISAR) of the electrically large objects that require enormous resources is improved.