• Title/Summary/Keyword: Electromagnetic (EM)

Search Result 472, Processing Time 0.022 seconds

Response of a rocksalt crystal to electromagnetic wave modeled by a multiscale field theory

  • Lei, Yajie;Lee, James D.;Zeng, Xiaowei
    • Interaction and multiscale mechanics
    • /
    • v.1 no.4
    • /
    • pp.467-476
    • /
    • 2008
  • In this work, a nano-size rocksalt crystal (magnesium oxide) is considered as a continuous collection of unit cells, while each unit cell consists of discrete atoms; and modeled by a multiscale concurrent atomic/continuum field theory. The response of the crystal to an electromagnetic (EM) wave is studied. Finite element analysis is performed by solving the governing equations of the multiscale theory. Due to the applied EM field, the inhomogeneous motions of discrete atoms in the polarizable crystal give rise to the change of microstructure and the polarization wave. The relation between the natural frequency of this system and the driving frequency of the applied EM field is found and discussed.

Development of Interface Between Optimization Solver and Commercial EM Software for Design of Electromagnetic Devices (상용 전자장 해석 프로그램 연동을 위한 전기기기 최적설계 인터페이스 개발)

  • Kim, Min-Ho;Byun, Jin-Kyu
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.45-48
    • /
    • 2009
  • In this paper, we use the optimization design theory based on the finite element method and implement the optimal design of electromagnetic devices using COMSOL interface. COMSOL is one of the commercial EM software. Shape information for the design optimization is extracted by CAD in EM software. To calculate the shape of optimal design, sensitive analysis is applied to the design processing in MATLAB. To achieve the design objective in this paper, objective function is defined. According to the sensitive analysis based on the finite element method, we change the design variable after the sensitivity of the objective function is computed. To verify the proposed method, the results are compared with the initial design.

  • PDF

EM Coupling Effect of sprint inductors by isolation methode in standard CMOS process (Spiral 인덕터 간 격리방법에 따른 Electromagnetic 커플링 효과)

  • Choi, Moon-Ho;Kim, Han-Seok;Jung, Sung-Il;Kim, Yeong-Seuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.91-92
    • /
    • 2005
  • The electromagnetic coupling effect in standard CMOS process is simulated and evaluated. EM coupling transfer characteristic between planar spiral inductors by isolation methode in standard CMOS have simulated and measured. Measurement results show that suppression of EM coupling effect by ground guardring. The evaluated structures are fabricated 1P5M(one poly, five metal) 0.25um standard CMOS process. These measurement results provide a isolation design guidelines in standard CMOS process for Rf coupling suppression.

  • PDF

Flux Density Analysis of Linear Induction Electromagnetic Pumps for Liquid Metal (액체 금속 구동용 선형유도전자램프의 자속밀도 분포 해석)

  • Jang, Nam-Young;Eun, Jae-Jung;Park, Tae-Bong;Choi, Hun-Gi;Yoo, Geun-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.906-908
    • /
    • 2003
  • A Linear induction electromagnetic(EM) pump of liquid metal fast breeder reactor(LMFBR) is used for the purpose that the liquid metal of high temperature is transported by EM force. This paper evaluates magnetic flux density necessary for transporting liquid metal, using analytical model of the linear induction EM pump. Using the 2-D finite element method(2-D FEM), magnetic flux density is estimated in consideration of a geometric model, electric parameter, and velocity of liquid metal. From the viewpoint of hydrodynamics, the results can be used for flow analysis of the liquid metal.

  • PDF

Gravitational-wave Electromagnetic Counterpart Korean Observatory (GECKO): Network of Telescopes and Follow-up Observation of GW190425

  • Paek, Gregory S.H.;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.36.3-37
    • /
    • 2020
  • Recent observation of the neutron star merger event, GW170817, through both gravitational wave (GW) and electromagnetic wave (EM) observations opened a new way of exploring the universe, namely, multi-messenger astronomy (MMA). One of the keys to the success of MMA is a rapid identification of EM counterpart. We will introduce GW follow-up observation project in Korea for hunting GW EM counterpart rapidly and its strategy for prioritization of GW source host galaxy candidates. Our method relies on recent simulation results regarding plausible properties of GW source host galaxies and the low latency localization map from LIGO/Virgo. We will show a test result for both binary neutron star merger events using previous event and describe observing strategy with our facilities for GW events during the ongoing LIGO/Virgo O3 run. Finally, we report the results of optical/NIR follow-up observation of GW190425, the first neutron.

  • PDF

Reduction of specific absorption rate(SAR) in multiple cylindrical-human models (복수 원통형 인체모델에서의 흡수전력 저감)

  • Yang, Jun-Won;Kim, Hyung-Ho
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.271-276
    • /
    • 2012
  • As applications of electromagnetic waves increase, biological effects caused by the EM waves are worried about. Many studies about the biological effects are reported. However, there are only a few reports on protection against the EM waves. The protection should be considered for the researchers who use strong EM waves in their experiments. In this paper, a method of reducing SAR in a cylindrical human model by a shield plate is proposed for RF engineers exposed to strong electromagnetic waves. The shield plate modeled as an arc structure is shown effectively to protect the cylindrical human model from the exposed field.

Role of Radio Frequency and Microwaves in Magnetic Fusion Plasma Research

  • Park, Hyeon K.
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2017
  • The role of electromagnetic (EM) waves in magnetic fusion plasma-ranging from radio frequency (RF) to microwaves-has been extremely important, and understanding of EM wave propagation and related technology in this field has significantly advanced magnetic fusion plasma research. Auxiliary heating and current drive systems, aided by various forms of high-power RF and microwave sources, have contributed to achieving the required steady-state operation of plasmas with high temperatures (i.e., up to approximately 10 keV; 1 eV=10000 K) that are suitable for future fusion reactors. Here, various resonance values and cut-off characteristics of wave propagation in plasmas with a nonuniform magnetic field are used to optimize the efficiency of heating and current drive systems. In diagnostic applications, passive emissions and active sources in this frequency range are used to measure plasma parameters and dynamics; in particular, measurements of electron cyclotron emissions (ECEs) provide profile information regarding electron temperature. Recent developments in state-of-the-art 2D microwave imaging systems that measure fluctuations in electron temperature and density are largely based on ECE. The scattering process, phase delays, reflection/diffraction, and the polarization of actively launched EM waves provide us with the physics of magnetohydrodynamic instabilities and transport physics.

Multi-Messenger Astronomy with GECKO, Gravitational-wave EM Counterpart Korean Observatory - Past, Present, and Future

  • Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.35.3-35.3
    • /
    • 2019
  • The new era of multi-messenger astronomy (MMA) has arrived in 2017 with the detection of the binary neutron star merger in both gravitational wave (GW) and electromagnetic radiation (EM). Now, the new run of GW detectors are providing numerous GW events and the number GW events are expected to increase dramatically in future as the GW sensitivities improve. When the GW studies are combined with EM counterpart observations, a great synergy is expected in many areas of study such as the physical process following the compact object merger, the environment of such events (and galaxy evolution), and cosmology, Therefore, it has now become crucial to identify and characterize these GW events in optical/IR EM. In the past, we have been performing optical/NIR observation of GW events using a worldwide network of more than 10 telescopes, and are getting more actively involved in MMA of GW sources. In this talk, we will present our network of telescopes, the EM follow-up observation results of GW events including GW170817 and the O3 events in 2019, and the current issues in MMA. We will also give the future prospects of MMA, showing the forecast for the GW events and the outlook of EM MMA observations.

  • PDF

An Efficient Multipaction Analysis of an Output Multiplexer for Satellite Applications

  • Uhm Man Seok;Lee Juseop;Yom In-Bok;Kim Jeong-Phill
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.176-182
    • /
    • 2005
  • In this paper, an efficient multipaction analysis method of a manifold multiplexer for satellite applications is presented. While FEM(Finite Element Method) is used for the multipaction analysis of the lowpass filter, the equivalent circuit model is used for the analysis of the channel filters and the manifold. Employing equivalent circuit model for multipaction analysis takes less time than using EM(Electromagnetic) field analysis method while keeping the accuracy of the multipaction analysis. This present analysis method is applied to the manifold multiplexer for Ka-band satellite transponders and the results show that the present method is as accurate as the conventional EM field analysis method.

Effect of Annealing Temperature on the Electromagnetic Wave Absorbing Properties of Nanocrystalline Soft-magnetic Alloy Powder (연자성 나노결정합금 분말의 열처리 온도에 의한 전자파 흡수 특성의 영향)

  • Hong, S.H.;Sohn, K.Y.;Park, W.W.;Moon, B.G.;Song, Y.S.
    • Journal of Powder Materials
    • /
    • v.15 no.1
    • /
    • pp.18-22
    • /
    • 2008
  • The electromagnetic (EM) wave absorption properties with a variation of crystallization annealing temperature have been investigated in a sheet-type absorber using the $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy powder. With increasing the annealing temperature the complex permeability (${\mu}_r$), permittivity (${\varepsilon}_r$) and power absorption changed. The EM wave absorber shows the maximum permeability and permittivity after the annealing at $610^{\circ}C$ for 1 hour, and its calculated power absorption is above 80% of input power in the frequency range over 1.5 GHz.