• Title/Summary/Keyword: Electrolyzer

Search Result 63, Processing Time 0.024 seconds

Enhanced Activity for Oxygen Evolution Reaction of Nanoporous IrNi thin film Formed by Electrochemical Selective Etching Process

  • Park, Shin-Ae;Shim, Kyubin;Kim, Kyu-Su;Moon, Young Hoon;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.402-407
    • /
    • 2019
  • Water electrolysis is known as the most sustainable and clean technology to produce hydrogen gas, however, a serious drawback to commercialize this technology is due to the slow kinetics in oxygen evolution reaction (OER). Thus, we report on the nanoporous IrNi thin film that reveals a markedly enhanced OER activity, which is attained through a selective etching of Os from the IrNiOs alloy thin film. Interestingly, electrochemical selective etching of Os leads to the formation of 3-dimensionally interconnected nanoporous structure providing a high electrochemical surface area (ECSA, 80.8 ㎠), which is 90 fold higher than a bulk Ir surface (0.9 ㎠). The overpotential at the nanoporous IrNi electrode is markedly lowered to be 289 mV at 10 mA cm-2, compared with bulk Ir (375 mV at 10 mA cm-2). The nanoporous IrNi prepared through the selective de-alloying of Os is promising as the anode material for a water electrolyzer.

Power control strategies of a DC-coupled hybrid power system for a building microgrid

  • Cho, Jea-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.50-64
    • /
    • 2011
  • In this paper, a DC-coupled photovoltaic (PV), fuel cell (FC) and ultracapacitor hybrid power system is studied for building microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. The main weak point of the FC system is slow dynamics, because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. A power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build an autonomous system with pragmatic design, and a dynamic model proposed for a PV/FC/UC bank hybrid power generation system. A simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow. The system performance under the different scenarios has been verified by carrying out simulation studies using a practical load demand profile, hybrid power management and control, and real weather data.

Modeling of Solar/Hydrogen/DEGS Hybrid System for Stand Alone Applications of a Large Store

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.11
    • /
    • pp.57-68
    • /
    • 2013
  • The market for distributed power generation based on renewable energy is increasing, particularly for standalone mini-grid applications in developing countries with limited energy resources. Stand-alone power systems (SAPS) are of special interest combined with renewable energy design in areas not connected to the electric grid. Traditionally, such systems have been powered by diesel engine generator sets (DEGS), but also hybrid systems with photovoltaic and/or wind energy conversion systems (WECS) are becoming quite common nowadays. Hybrid energy systems can now be used to generate energy consumed in remote areas and stand-alone microgrids. This paper describes the design, simulation and feasibility study of a hybrid energy system for a stand-alone power system. A simulated model is developed to investigate the design and performance of stand-alone hydrogen renewable energy systems. The analysis presented here is based on transient system simulation program (TRNSYS) with realistic ventilation load of a large store. Design of a hybrid energy system is site specific and depends on the resources available and the load demand.

Commercial Production for the Hydrogen Generation with Alkaline Electrode Cells (수소 생산을 위한 알칼라인 수전해장치 상용품 제작)

  • KIM, BO YEON;KIM, DONG JIN;KANG, EUN YOUNG;KIM, TAE WAN;SIM, HUI CHAN;LEE, TAECK HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.206-211
    • /
    • 2015
  • For the hydrogen production, Gas Lab and Gnc make alkaline watrer electrolyzer and found optimized condition of experimental parameters of cell material and operating procedures. For the commercial production, we saved electric power consumption and caloric based efficiency with over 70%. Used cell pressures are 10 bar, 30 bar and consumed electricity is $4,000A/m^2$, 4.19 kW ($T=100^{\circ}C$) at 10 bar. Another data is $2,000A/m^2$, 3.92 kW ($T=95^{\circ}C$) at 30 bar. Applied voltage is 1.75 V ($100^{\circ}C$, 10 bar), 1.64 V ($95^{\circ}C$, 10 bar), 1.81 V ($85^{\circ}C$, 30 bar), 1.76 V ($95^{\circ}C$, 30 bar). As cell temperature increase, applied voltage has been decreased and current has been increased. The concentration of KOH solution is 30 weight %.

Electrochemical Treatment of COD and T-N in Wastewater from Flue Gas Desulfurization Process (전해처리법에 의한 탈황폐수 중의 COD 및 총 질소 제거)

  • Cha, Go-Eun;Noh, Da-Ji;Seo, Jeong-Hyeon;Lim, Jun-Heok;Lee, Tae-Yoon;Lee, Jea-Keun
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1073-1078
    • /
    • 2013
  • This paper presents the results of the electrochemical treatment of chemical oxygen demand(COD) and total nitrogen(T-N) compounds in the wastewater generated from flue gas desulfurization process by using a lab-scale electrolyzer. With the increase in the applied current from 0.6 Ah/L to 1.2 Ah/L, the COD removal efficiency rapidly increases from 74.5% to 96%, and the T-N removal efficiency slightly increases from 37.2% to 44.9%. Therefore, it is expected that an electrochemical treatment technique will be able to decrease the amount of chemicals used for reducing the COD and T-N in wastewater of the desulfurization process compared to the conventional chemical treatment technique.

Design of Fuzzy Logic Controller for Optimal Control of Hybrid Renewable Energy System (하이브리드 신재생에너지 시스템의 최적제어를 위한 퍼지 로직 제어기 설계)

  • Jang, Seong-Dae;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, the optimal fuzzy logic controller(FLC) for a hybrid renewable energy system(HRES) is proposed. Generally, hybrid renewable energy systems can consist of wind power, solar power, fuel cells and storage devices. The proposed FLC can effectively control the entire HRES by determining the output power of the fuel cell or the absorption power of the electrolyzer. In general, fuzzy logic controllers can be optimized by classical optimization algorithms such as genetic algorithms(GA) or particle swarm optimization(PSO). However, these FLC have a disadvantage in that their performance varies greatly depending on the control parameters of the optimization algorithms. Therefore, we propose a method to optimize the fuzzy logic controller using the teaching-learning based optimization(TLBO) algorithm which does not have the control parameters of the algorithm. The TLBO algorithm is an optimization algorithm that mimics the knowledge transfer mechanism in a class. To verify the performance of the proposed algorithm, we modeled the hybrid system using Matlab Tool and compare and analyze the performance with other classical optimization algorithms. The simulation results show that the proposed method shows better performance than the other methods.

A Study on the Ultrasonic Application for the Efficiency Elevation of the Hydrogen Fuel Production (On solution and concentration) (수소연료 생산의 효율향상을 위한 초음파응용에 관한 연구(용액과 농도 중심으로))

  • Song, Min-Geun;Lee, Sang-Bum;Son, Seung-Woo;Ju, Eun-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.2
    • /
    • pp.129-136
    • /
    • 2001
  • An investigation on the A/V(ampere/volt) gradient according to the concentration and the kind of solution in a electrolyzer is carried out to obtain the basic data on the ultrasonic application for the efficiency elevation of the hydrogen fuel production. KOH is selected as an electrolyte and concentrations are 0%, 10%, 20% and 30%. The solutions are city water, city water with nitrogen. distilled water and distilled water with nitrogen. The Electrochemical analyzer(BAS Co.) is used as a measuring device to observe the A/V gradient. And the limit of volt is from -3000mV to +3000mV. The 28kHz magnetic transducer is selected to give them ultrasonic forcing. In results, it is clarified that ultrasonic influences the A/V gradient in the electrolytic solution.

  • PDF

The Effect of sGO Content in sPEEK/sGO Composite Membrane for Unitized Regenerative Fuel Cell (일체형 재생연료전지 적용을 위한 sGO 함량 변화에 따른 sGO/sPEEK 복합막의 특성 평가)

  • Jung, Ho-Young;Kim, Min-Woo;Lim, Ji-Hun;Choi, Jin H.;Roh, Sung-Hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.127-131
    • /
    • 2016
  • Polymer electrolyte membrane for unitized regenerative fuel cells requires high proton conductivity, high dimensional stability, low permeability, and low cost. However, DuPont's Nafion which is a commercial polymer electrolyte membrane has high permeability, high cost, and decreasing proton conductivity and dimensional stability over $80^{\circ}C$. To address these problems, sulfonated poly ether ether ketone (sPEEK) which is a low cost hydrocarbon polymer is selected as matrix polymer for the preparation of polymer electrolyte membrane. In addition, composite membrane with improved proton conductivity and dimensional stability is prepared by introducing sulfonated graphene oxide (sGO). The fundamental properties of polymer electrolyte membranes are analyzed by investigating membrane's water content, dimensional stability, proton conductivity, and morphology. The cell test is conducted to consider the possibility of application of sPEEK/sGO composite membrane for an unitized regenerative fuel cell.

A Multiagent-Based Hybrid Power Control and Management of Distributed Power Sources

  • Yoon, Gi-Gab;Hong, Won-Pyo;Lee, Ki-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.70-81
    • /
    • 2011
  • In this paper, a multi-agent control system for DC-coupled photovoltaic (PV), fuel cell (FC), ultracapacitor(UC) and battery hybrid power system is studied for commercial buildings & apartment buildings microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. A multi-agent system based-power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build the multi-agent control system with pragmatic design, and a dynamic model proposed for a PV/FC/UC/battery bank hybrid power generation system. A dynamic simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Stateflow. Simulation results are also presented to demonstrate the effectiveness of the proposed multi-agent control and management system for building microgrid.

Development of a Welding Machine System Using Brown Gas by Improved Water Electrolyzation

  • Lee Yong-Kyun;Lee Sang-yong;Jeong Byung-Hwan;Mok Hyung-Soo;Choe Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.305-311
    • /
    • 2005
  • Throughout the world, studies on the water energization are currently under way. Of those, Brown gas, which is generated through the electrolyzation of water and is a mixed gas of the constant volume of 2 parts hydrogen to 1 part oxygen, has better characteristics in terms of economy, energy efficiency, and environmental affinity than those of acetylene gas and LPG (Liquefied Petroleum Gas) used for existing welding machines. This paper analyzes the characteristics of Brown gas and presents methods for increasing the generating efficiency of Brown gas by designing a power supply to deliver power to a water-electrolytic cell and designing a cylindrical electrode to improve the efficiency of the electrolyzer needed for water electrolyzation. Based on the above the methods, a welding machine using Brown gas is developed. And the generation efficiency of Brown gas is measured tinder different conditions (duty ratio, frequency and amplitude) of supplied power.