• Title/Summary/Keyword: Electrolyzer

Search Result 63, Processing Time 0.022 seconds

Techno-economic Analysis of Power to Gas (P2G) Process for the Development of Optimum Business Model: Part 1 Methane Production

  • Roy, Partho Sarothi;Yoo, Young Don;Kim, Suhyun;Park, Chan Seung
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.182-192
    • /
    • 2022
  • This study provides an overview of the production costs of methane and hydrogen via water electrolysis-based hydrogen production followed by a methanation based methane production technology utilizing CO2 from external sources. The study shows a comparative way for economic optimization of green methane generation using excess free electricity from renewable sources. The study initially developed the overall process on the Aspen Plus simulation tool. Aspen Plus estimated the capital expenditure for most of the equipment except for the methanation reactor and electrolyzer. The capital expenditure, the operating expenditure and the feed cost were used in a discounted cash flow based economic model for the methane production cost estimation. The study compared different reactor configurations as well. The same model was also used for a hydrogen production cost estimation. The optimized economic model estimated a methane production cost of $11.22/mcf when the plant is operating for 4000 hr/year and electricity is available for zero cost. Furthermore, a hydrogen production cost of $2.45/GJ was obtained. A sensitivity analysis was performed for the methane production cost as the electrolyzer cost varies across different electrolyzer types. A sensitivity study was also performed for the changing electricity cost, the number of operation hours per year and the plant capacity. The estimated levelized cost of methane (LCOM) in this study was less than or comparable with the existing studies available in the literature.

Effect of Double Porous Layer on a Polymer Electrolyte Unitized Regenerative Fuel Cell (수전해·연료전지 가역셀에서 이중 가스 확산층의 효과)

  • Hwang, Chul-Min;Park, Dae-Heum;Jung, Young-Guan;Kim, Kyunghoon;Kim, Jongsoo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.4
    • /
    • pp.320-325
    • /
    • 2013
  • TUnitized reversible fuel cells (URFC) combine the functionality of a fuel cell and electrolyzer in one unitized device. For a URFC with proton exchange membrane, a titanium (Ti)-felt is applied to the gas diffusion layer (GDL) substrate at the oxygen electrode, and additionally titanium (Ti)-powders and TiN-powders are loaded in the GDL substrate as a micro porous layer (MPL). Double porous layer with TiN MPL was not acceptable for the URFC because both of fuel cell performance and electrolysis performance are degraded. The double porous layer with Ti-powder loading in the Ti-felt substrate influence rearly for the electrolysis performance. In contrast, the change of pore-size distribution brings a significant improvement of fuel cell performance under fully humidification conditions. This fact indicates that the hydrophobic meso-pores in the GDL play an important role for mass transport.

Symmetrical Solid Oxide Electrolyzer Cells (SOECs) with La0.6Sr0.4Co0.2Fe0.8O3 (LSCF)-Gadolinium Doped Ceria (GDC) Composite Electrodes

  • Lee, Kyoung-Jin;Lee, Min-Jin;Park, Seok-hoon;Hwang, Hae-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.489-493
    • /
    • 2016
  • Scandia ($Sc2O_3$)-stabilized zirconia (ScSZ) electrolyte-supported symmetrical solid oxide electrolyzer cells (SOECs), in which lanthanum strontium cobalt ferrite (LSCF)-gadolinia ($Gd_2O_3$)-doped ceria (GDC) composite materials are used as both the cathode and anode, were fabricated and their high temperature steam electrolysis (HTSE) performance was investigated. Current density-voltage curves were obtained for cells operated in 10% $H_2O$/90% Ar at 750, 800, and $850^{\circ}C$. It was possible to determine the ohmic, cathodic, and anodic contributions to the total overpotential using the three-electrode technique. The HTSE performance was significantly improved in the symmetrical cell with LSCF-GDC electrodes compared to the cell consisting of an Ni-YSZ cathode and LSCF-GDC anode. It was found that the overpotential due to the LSCF-GDC cathode largely decreased and, at a given current density, the total cell voltage decreased, which resulted in the enhanced hydrogen production rate in the symmetrical cell.

Criticality analysis of pyrochemical reprocessing apparatuses for mixed uranium-plutonium nitride spent nuclear fuel using the MCU-FR and MCNP program codes

  • P.A. Kizub ;A.I. Blokhin ;P.A. Blokhin ;E.F. Mitenkova;N.A. Mosunova ;V.A. Kovrov ;A.V. Shishkin ;Yu.P. Zaikov ;O.R. Rakhmanova
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1097-1104
    • /
    • 2023
  • A preliminary criticality analysis for novel pyrochemical apparatuses for the reprocessing of mixed uranium-plutonium nitride spent nuclear fuel from the BREST-OD-300 reactor was performed. High-temperature processing apparatuses, "metallization" electrolyzer, refinery remelting apparatus, refining electrolyzer, and "soft" chlorination apparatus are considered in this work. Computational models of apparatuses for two neutron radiation transport codes (MCU-FR and MCNP) were developed and calculations for criticality were completed using the Monte Carlo method. The criticality analysis was performed for different loads of fissile material into the apparatuses including overloading conditions. Various emergency situations were considered, in particular, those associated with water ingress into the chamber of the refinery remelting apparatus. It was revealed that for all the considered computational models nuclear safety rules are satisfied.

Removal of Cu impurities in LiBr solution using cyclone electrowinning method (싸이클론 전해환원방법을 이용한 LiBr 용액내의 Cu 불순물 제거에 관한 연구)

  • Da Jung Park;Kyu Hwan Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.92-97
    • /
    • 2024
  • The LiBr aqueous solution, which is the absorption liquid of absorption refrigerator, must be replaced periodically because the concentration of impurities such as Cu2+, Fe2+, Ca2+, etc., increases due to corrosion of the tubes as the period of use increases, and the refrigeration efficiency decreases significantly. In order to reuse the waste absorption liquid, flocculation-precipitation method is mainly applied to precipitate the impurities, which requires hundreds of times the concentration of impurities and generates additional waste. In this study, a process for removing Cu ion impurities from cyclone electrolyzer by electrolytic reduction is presented in a small-scale facility without additional waste. It was confirmed that Cu ion impurities can be removed down to 1 ppm by electrolytic reduction process, and to further improve the removal rate, the mass transfer rate was increased by using a cyclone electrolyzer. The removal rate of Cu ions increased with the increase of flow rate and current density, and it was confirmed that Cu was removed at a rate of 1.48 ppm/h under the condition of 330 mL/sec and 2.5 mA/cm2.

Development of a continuous electrolytic system with an ion exchange membrane for pH-control with only one discharge of electrolytic solution and its characteristics (단일 전해액 배출만을 가지는 pH조절용 연속식 이온 교환막 전해 시스템의 개발과 그 특성)

  • Kim Kwang-Wook;Kim In-Tae;Park Geun-Il;Lee Eil-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.269-278
    • /
    • 2005
  • In order to produce only a pH-controlled solution without discharging any unwanted solution, this work has developed a continuous electrolytic system with a pH-adjustment reservoir being placed before an ion exchange membrane-equipped electrolyzer, where as a target solution was fed into the pH-adjustment reservoir, some portion of the solution in the pH-adjustment reservoir was circulated through the cathodic or anodic chamber of the electrolyzer depending on the type of the ion exchange membrane used, and some other portion of the solution in the pH-adjustment reservoir was discharged from the electrolytic system through the other counter chamber with its pH being controlled. The internal circulation of the pH-adjustment reservoir solution through the anodic chamber in the case of using a cation exchange membrane and that through the cathodic chamber in the case of using an anion exchange membrane could make the solution discharged from the other counter chamber effectively acidic and basic, respectively. The phenomena of the pH being controlled in the system could be explained by the electro-migration of the ion species in the solution through the ion exchange membrane under a cell potential difference between anode and cathode and its consequently-occurring non-charge equilibriums and electrolytic water- split reactions in the anodic and cathodic chambers.

  • PDF

Grid Independent Photovoltaic Fuel-Cell Hybrid System: Design and Control Strategy

  • Islam Saiful;Belmans Ronnie
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.399-404
    • /
    • 2005
  • In this paper, a hybrid photovoltaic fuel-cell generation system employing an electrolyzer for hydrogen generation and battery for storage purpose is designed and simulated. The system is applicable for remote areas or isolated DC loads. Control strategy has been considered to achieve permanent power supply to the load via the photovoltaic/battery or the fuel cell based on the power available from the sun. MATLAB and SIMULINK have been used for the simulation work. A sensitivity analysis is conducted for various load level based on availability of solar radiation.

Characterizations of Pt-SPE Electrocatalysts Prepared by an Impregnation-Reduction Method for Water Electrolysis (함침-환원법으로 제조된 수전해용 Pt-SPE 전극촉매의 특성)

  • Jang, Doo-Young;Jang, In-Young;Kweon, Oh-Hwan;Kim, Kyoung-Eon;Hwang, Gab-Jin;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.4
    • /
    • pp.440-447
    • /
    • 2006
  • Solid polymer electrolyte(SPE) membrane with electrodes embedded on both faces offer unique possibilities for the electrochemical cells like water electrolyzer with fuel cell. The Nafion 117 membrane was used as the SPE, and $Pt(NH_3)_4Cl_2$ and $NaBH_4$ as the electrocatalysts and reducing agent, respectively. The 'impregnation-reduction(I-R) method' has been investigated as a tool for the preparation of electrocatalysts for water electrolyzer by varying the concentration of reducing agent and reduction time at fixed concentration of platinum salt, 5 mmol/L. Pt-SPE electrocatalysts prepared by non-equilibrium I-R method showed the lowest cell voltage of 2.17 V at reduction time, 90 min and with concentration of reducing agent 0.8 mol/L and the cell voltage with those by equilibrium I-R method was 2.42 V at reduction time, 60 min and with concentration of reducing agent 0.8 mol/L. The cell voltage were obtained at a current density $1\;A/cm^2$ and $80^{\circ}C$. In water electrolysis, hydrogen production efficiency by Pt-SPE electrocatalyst is 68.2% in case of non-equilibrium I-R method and 61.2% at equilibrium I-R method.

A Study on Reverse-water Gas Shift Reaction in Solid Oxide Water Electrolysis Cell-stack for CO2 Reduction (CO2 저감을 위한 고체산화물 수전해 스택의 역수성가스 전환 반응 고찰)

  • SANGKUK KIM;NAMGI JEON;SANGHYEOK LEE;CHIKYU AHN;JIN SOO AHN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.162-167
    • /
    • 2024
  • Fossil fuels have been main energy source to people. However, enormous amount of CO2 was emitted over the world , resulting in global climate crisis today. Recently, solid oxide electrolyzer cell (SOEC) is getting attention as an effective way for producing H2, a clean energy resource for the future. Also, SOEC could be applicable to reverse water-gas shift reaction process due to its high-temperature operating condition. Here, SOEC system was utilized for both H2 production and CO2 reduction process, allowing product gas composition change by controlling operating conditions.