• Title/Summary/Keyword: Electrolyte

Search Result 3,979, Processing Time 0.033 seconds

Development of Surface Coating Technology fey Metallic Bipolar Plate in PEMFC : I. Study on Surface and Corrosion Properties (PEMFCB금속분리판 코팅 기술 개발 : I. 표면 및 부식 특성 평가)

  • Chung, Kyeong-Woo;Kim, Se-Yung;Yang, Yoo-Chang;Ahn, Seung-Gyun;Jeon, Yoo-Taek;Na, Sang-Mook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.348-351
    • /
    • 2006
  • Bipolar plate, which forms about 50% of the stack cost, is an important core part with polymer electrolyte membrane in PEMFC. Bipolar plates have been commonly fabricated from graphite meterial having high electrical conductivity and corrosion resistance. Lately, many researchers have concentrated their efforts on the development of metallic bipolar plate and stainless steel has been considered as a potential material for metallic bipolar plate because of its high strength, chemical stability, low gas permeability and applicability to mass production. However, it has been reported that its inadequate corrosion behavior under PEMFC environment lead to a deterioration of membrane by dissolved metal ions and an increase in contact resistance by the growth of passive film therefore, its corrosion resistance as well as contact resistance must be improved for bipolar plate application. In this work, several types of coating were applied to 316L and their electrical conductivity and corrosion resistance were evaluated In the simulated PEMFC environment. Application of coating gave rise to low interfacial contact resistances below $19m{\Omega}cm^2$ under the compress force of $150N/cm^2$. It also made the corrosion potential to shift in the posit ive direct ion by 0.3V or above and decreased the corrosion current from ca. $9{\mu}A/cm^2$ to ca. $0.5{\mu}A/cm^2$ in the mixed solution of $0.1N\;N_2SO_4$ and 2ppm HF A coat ing layer under potentiostatic control of 0.6V and $0.75V_{SCE}$ for 500 hours or longer showed some instabilities, however, no significant change in coat Ing layer were observed from Impedance data. In addition, the corrosion current maintained less than $1{\mu}A/cm^2$ for most of time for potentiostatic tests. It indicates that high electrical conductivity and corrosion resistance can be obtained by application of coatings in the present work.

  • PDF

Adhesion Layer 사용으로 인한 Si Thin Film Anode 전극의 신뢰성 향상

  • O, Min-Seop;Song, Yeong-Hak;U, Chang-Su;Jeong, Jun-Ho;Hyeon, Seung-Min;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.681-682
    • /
    • 2013
  • 전기는 우리 주변의 에너지 형태 중에서 가장 편리하고 광범위하게 사용되고 있다. 이러한 전기는 전자제품, 전기자동차, 에너지 저장 플랜트 등 매우 많은 분야에서 저장되고 사용되고 있다. 특히 에너지 저장 용량의 확대는 휴대폰, 노트북 PC 등 휴대용 IT 기기의 성장에 결정적인 역할을 하였다. 가볍고 작으면서도 고용량의 전기 에너지 저장 장치가 없었다면, 통신이나 인터넷 그리고 오락 등 다양한 기능을 작은 휴대용 기기에 구현할 수 없었을 것이다. 그러나 시간이 흐를수록 기기의 요구 성능이 높아지고 소비자의 니즈가 더욱더 다양해지고 고도화될수록 단일 부품으로 가장 큰 부피를 차지하는 에너지 저장 장치의 용량과 디자인은 점점 중요해지고 있다. 이러한 에너지 저장 장치에서 가장 친숙한 형태는 2차 전지 계열이다. 납 축전지를 비롯하여, 니켈수소, 니켈카드뮴, electrochemical capacitor와 Li ion 계열 등이 대표적이다. 특히 Li ion 배터리는 모바일, 자동차 및 에너지 저장 그리드 등과 같은 다양한 분야에 가장 많이 적용되고있다. Li ion 배터리에 대하여 현재의 핵심적인 연구분야는 전극 재료(cathode, anode)와 electrolyte에 대한 것이다. Anode 전극 재료 중에서 가장 많이 사용되는 재료는 카본을 기반으로 하는 재료로 안정성에 대한 장점이 있지만 에너지 밀도가 낮다는 단점이 있다. 에너지 저장 용량 증가에 대한 필요성이 증가하기 때문에 현재 많이 사용되고 있는 에너지 밀도가 낮은 카본 재료를 대체하기 위해서 이론 용량이 높다고 알려진 실리콘과 같은 메탈이나 주석 산화물과 같은 천이 금속 산화물에 대하여 많은 연구가 진행되고 있다. 특히 현재까지 알려진 많은 재료 중에서 가장 큰 capacity (~4,000 mAh/g)를 가지고 있다고 알려진 실리콘이 카본의 대체 재료로 많은 연구가 진행되고 있다. 그러나, Li 과 반응을 하며 약 300~400%에 달하는 부피팽창이 발생하고, 이러한 부피 팽창 때문에 충 방전이 진행됨에 따라 current collector로부터 박리되는 현상을 보여 빠른 용량 감소를 보여주고 있다. 본 연구에서는 adhesion layer를 current collector와 실리콘 전극 재료 사이에 삽입하여 충 방전 시 부피팽창에 의한 미세구조의 변화와 electrochemical 특성에 대한 영향을 알아보았다. 실험에 사용한 anode 전극은 상용 Cu foil current collector에 RF/DC magnetron 스퍼터링을 통해 다양한 종류(Ti, Ta 등)의 adhesion layer과 200 nm 두께의 Si 박막을 증착하였다. 또한 Bio-logic Potentiostat/ Galvanostat VMP3 와 WanAtech automatic battery cycler 장비를 사용하여 0.2 C-rate로 half-cell 타입의 코인 셀로 조립한 전극에 대한 충 방전 실험을 진행하였다. Adhesion layer의 사용으로 인해 실리콘 박막과 Cu current collector 사이의 박리 현상을 줄여줄 수 있었고, 충 방전 시 Cu 원자의 실리콘 박막으로의 확산을 통한 brittle한 Cu-Si alloy 형성을 막아 줄 수 있어 큰 특성 향상을 확인할 수 있었다. 또한, 리튬과 실리콘의 반응을 통한 형태와 미세구조 변화를 SEM, TEM 등의 다양한 장비를 사용하여 확인하였고, 이를 통해 adhesion layer의 사용이 전극의 특성향상에 큰 영향을 끼쳤다는 것을 확인할 수 있었다.

  • PDF

Regulation of Chilling Tolerance in Rice Seedlings by Plant Hormones

  • Chu, Chun;Lee, Tse-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.288-298
    • /
    • 1992
  • Since the major important factors limiting plant growth and crop productivity are environmental stresses, of which low temperature is the most serious. It has been well known that many physiological processes are alterant in response to the environmental stress. With regard to the relationship between plant hormones and the regulation of chilling tolerance in rice seedlings, the major physiological roles of plant hormones: abscisic acid, ethylene and polyamines are evaluated and discussed in this paper. Rice seedlings were grown in culture solution to examine the effect of such plant hormones on physiological characters related to chilling tolerance and also to compare the different responses among tested cultivars. Intact seedlings about 14 day-old were chilled at conditions of 5$^{\circ}C$ and 80% relative humidity for various period. Cis-(+)-ABA content was measured by the indirect ELISA technique. Polyamine content and ethylene production in leaves were determined by means of HPLC and GC respectively. Chilling damage of seedlings was evaluated by electrolyte leakage, TTC viability assay or servival test. Our experiment results described here demonstrated the physiological functions of ABA, ethylene, and polyamines related to the regulation of chilling tolerance in rice seedlings. Levels of cis-(+)-ABA in leaves or xylem sap of rice seedlings increased rapidly in response to 5$^{\circ}C$ treatment. The tolerant cultivars had significant higher level of endogenous ABA than the sensitive ones. The ($\pm$)-ABA pretreatment for 48 h increased the chilling tolerance of the sensitive indica cultivar. One possible function of abscisic acid is the adjustment of plants to avoid chilling-induced water stress. Accumulation of proline and other compatible solutes is assumed to be another factor in the prevention of chilling injuies by abscisic acid. In addition, the expression of ABA-responsive gene is reported in some plants and may be involving in the acclimation to low temperature. Ethylene and its immediate precusor, 1-amincyclopropane-1-carboxylic acid(ACC) increased significantly after 5$^{\circ}C$ treatment. The activity of ACC synthase which converts S-adenosylmethionine (SAM) to ACC enhanced earlier than the increase of ethylene and ACC. Low temperature increased ACC synthase activity, whereas prolonged chilling treatment damaged the conversion of ACC to ethylene. It was shown that application of Ethphon was beneficial to recovering from chilling injury in rice seedlings. However, the physiological functions of chilling-induced ethylene are still unclear. Polyamines are thought to be a potential plant hormone and may be involving in the regulation of chilling response. Results indicated that chilling treatment induced a remarkable increase of polyamines, especially putrescine content in rice seedlings. The relative higher putrescine content was found in chilling-tolerant cultivar and the maximal level of enhanced putrescine in shoot of chilling cultivar(TNG. 67) was about 8 folds of controls at two days after chilling. The accumulation of polyamines may protect membrane structure or buffer ionic imbalance from chilling damage. Stress physiology is a rapidly expanding field. Plant growth regulators that improve tolerance to low temperature may affect stress protein production. The molecular or gene approaches will help us to elucidate the functions of plant hormones related to the regulation of chilling tolerance in plants in the near future.

  • PDF

Interfacial Electrical Studios on Adhesion of Hematite Particles to Polyester Fabric and their Removal from the Fabric(Part 2) (Polyester 직물에의 Hematite 입자의 부착과 제거에 관한 계면 전기적고찰 (제2보))

  • 강인숙;김성련
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.5
    • /
    • pp.765-773
    • /
    • 1995
  • Effect of interfacial electrical conditions such as, the f potential of PET fiber and u-Fe203 particles, the stability parameter and potential energy of interaction on adhesion of a-Fe903 particles to PET fabric and their removal from the fabric, were investigated as functions of pH, electrolyte and ionic strength. The stability parameter, potential energy of interaction between a-Fe2O3 particles and PET fabric were calculated by using the heterocoagulation theory for a sphere-plate model The adhesion of a-Fe2O3 particles to PET fabric and their removal from PET fabric were carried out by using water bath shaker and Terg-O-Tometer under various solution conditions. The adhesion of a-Fe2O3 particles to the PET fabric and the removal of a-Fe2O3 particles from the PET fabric were biphasic and were maximum and minimum at pH 7~8, respectively. With high pH and polyanion electrolytes in solution, the adhesion of a-Fe2O3 particles to the PET fabric was low but effects of electrolytes on the removal of a-Fe2O3 particles from the PET fabric was small. The adhesion of a-Fe2O3 particles to the PET fabric and the removal of a-Fe2O3 Particles from the PET fabric were biphasic, and were lowest and highest at the ionic strength 1$\times$10-3, respectively. The adhesion of a-Fe2O3 particles to PET fabric was well related with the interfacial electrical conditions; it was negatively correlated with the f potentials of a-Fe2O3 Particles of its absolute value, the stability parameter and the maximum of total potential energy, while, the adhesion was not related with the t potentials of PET fiber itself. Therefore, the primary factor determining the adhesion of a-Fe203 particles to PET fabric may be the stability of dispersed particles caused by the electrical repulsion of particles. The removal of a-Fe203 particles from PET fabric was not related to such interfacial electrical conditions as the t potentials of PET fiber, the stability parameter and the maximum of total potential energy but removal was related to t potential of a-Fe203 particles.

  • PDF

Increase of Electrokinetic Soil Remediation Efficiency using Ethanoic Buffer (초산완충액에 의한 동전기적 토양복원 효과 증진 연구)

  • Kim, Gye-Nam;Oh, Won-Zin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2007-2016
    • /
    • 2000
  • After kaolin clay was compulsorily contaminated with $Sr^{2+}$ ion. the remediation characteristics by electrokinetic method were analyzed. In the first experiment. NaCl solution was used as an electrolyte to raise the electric field strength. After remediation for 0.8 days. the pH of the cathode side of the soil column was elevated from 4.0 to 11.7. and thereby precipitation $Sr(OH)_2$, started to be formed in the side. Therefore. efficiency of soil remediation was reduced significantly and the 32% of total $Sr^{2+}$ ion in the column was decontaminated in 6.7 days. In the second experiment. ethanoic buffer was injected in the soil column and $CH_3COOH$ was continuously inputted in cathode reservoir to restrain the pH elevation. The pH of the cathode side of the soil column was only ascended from 4.0 to 6.0 in 3.8 days and $Sr(OH)_2$ was not formed. The 21% of total $Sr^{2+}$ in the soil column was decontaminated in 0.6 days. and the 33% of total $Sr^{2+}$ in 0.9 days. and the 84% of total $Sr^{2+}$ in 1.6 days. and the 92% of total $Sr^{2+}$ in 2.5 days. and the 97% of total $Sr^{2+}$ in 3.8 days. Meanwhile. the residual concentrations in the column calculated by the developed model were similar to those by experiment.

  • PDF

Study on Hydrogen Embrittlement for API 5L X65 Steel Using Small Punch Test II : Weld Metal (소형펀치 시험을 이용한 API 5L X65 강의 수소취화에 관한 연구 II : 용접부)

  • Jang, Sang-Yup;Yoon, Kee-Bong
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • With weld metal of X65 steel, hydrogen was charged by electro-chemical method and mechanical behavior such as strength was measured by the small punch test. The weld metal was more sensitive to hydrogen charging than the case of base metal. The small punch (SP) strength was decreased as the hydrogen contents increased. Magnitude of strength decrease was dependent on current density, temperature, charging time. Current density and charging time have significant effect on the mechanical properties but temperature of electrolyte has limited effect. Fractured surfaces of the tested specimens were observed by SEM (scanning electron microscope). In the hydrogen charged specimens cleavage fracture were observed, which is consistent with the SP test results. Since the testing procedure for studying hydrogen embrittlement proposed in this study has shown good reproducibility of test results, the proposed method can be assumed to be a reliable test procedure. Using the electrochemical charging and the small punch test, the change of SP strength for X65 weld metal due to hydrogen embritlement could be evaluated sensitively.

Development of a Frequency Dependent Type Apex Locator with Automatic Compensation (자동 보정 주파수 의존형 근관장 측정기의 개발)

  • Kim, Deok-Won;Nam, Gi-Chang;Kim, Yeong-Ju;Lee, Seung-Jong
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.595-602
    • /
    • 1998
  • Among the apex locators, the frequency dependent type is more accurate and convenient to use than others, But the accuracy of the apex locator is still influenced by the presence of various electrolytes used in root canal treatments. In this study, we have developed a frequency dependent electronic apex locator minimizing the influence of the electrolytes on the measurement of root canal lengths. It was also confirmed that two frequencies of 500Hz and 100kHz are optimal for the measuring impedance compare with commercial product used(400Hz and 8kHz)a and there were no differences in accuracy among the three different types of the waveforms; sinusoidal, triangular, and rectangular waves(p>0.05). Impedance ratio of the two different frequencies represents the position of the file in root canal, and the voltage difference of two signals represents the status of the fluid in the root canal. As a result of compensation using the voltage differences, the errors were decreased on the average from +0.54mm to +0.18mm in $H_2O_2$ solution (p<0.01), and from -0.33mm to -0.01mm in NaOCl solution(p<0.01). The accuracies based on ${\pm}$0.5mm, in $H_2O_2$ and NaOCl solutions were improved with the automatic compensation from 71.1% and 91.1% to 82.2% and 100% respectively.

  • PDF

Influence of Electrolyte on the Actions of Naloxone (Naloxone의 효과(效果)에 미치는 전해질(電解質)의 영향(影響))

  • Chung, S.K.;Song, H.S.;Cho, K.P.
    • The Korean Journal of Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.17-22
    • /
    • 1981
  • In the electrically stimulated guinea-pig ileum, which was incubated in the modified Krebs-Henseleit bicarbonate buffer solution containing various concentrations of electrolytes at $4^{\circ}C$ for 24 hours, the effect of naloxone on the inhibitory action of morphine was investigated. Incubation potentiated the inhibitory action of morphine. In the incubated preperation, the inhibitory action of morphine was potentiated in the $Na^+\;75mM$, and $K^+\;2.9mM$ groups, while that action of morphine was reduced in the $Ca^{++}\;3.6mM,\;Mg^{++}$ free and $Mn{++}\;0.2mM$ groups. Naloxone in incubation media potentiated in the inhibitory action of morphine. In the preparations which were incubated in various concentrations of electrolytes plus naloxone, the action of morphine was reduced in $Na^+\;75mM,\;K^+\;2.9mM$, and $Ca^{++}\;3.6mM$ groups, while that action of morphine was potentiated in $Mg^{++}$free and $Mn{++}\;0.2mM$ groups. Naloxone antagonised those actions of morphine. However, $pA_2$ values for naloxone (index for affinity for antagonist) was not changed. Thus changes in the inhitory action of morphine caused by incubation are probably not the result of changes in the affinity of receptor, but due to the alterations in the events which precede or follow the receptor binding by incubations.

  • PDF

Changes in Blood Glucose and Electrolyte During Open Heart Surgery (저체온 개심술시 혈당 및 전해질치의 변화에 관한 연구)

  • Yoo, Byeung-Lyeul;Kim, Heung-Dae;Lee, Tae-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.4 no.1
    • /
    • pp.65-74
    • /
    • 1987
  • This study deals with the changes in the concentrations of blood glucose and electrolytes during open heart surgery. Blood glucose and electrolytes in connection with age, disease and anesthetic period were measured in 25 patients about to undergo heart surgery which were performed between June 1986 and August 1986 in Yeungnam University Hospital. Because glucose solution is commonly used as priming solution, and the priming solution is hyperglycemic and hyperosmolar, glucose level of priming solution in this study was adjusted to 100-200mg% level to minimize hyperglycemic and hyperosmolar effect. The following results were obtained. 1. Glucose level of priming solution before extracorporeal circulation was $151.6{\pm}3.13mg%$. 2. With body cooling, blood glucose level was elevated. As duration of extracorporeal circulation is prolonged, blood glucose level was elevated more, but no difference between age and diseases were observed. On warming, blood glucose level was progressively lowered. 3. Despite the low serum potassium level during by pass, the potassium level was progressively elevated following by-pass, cut the serum potassium level was low compared to control values. Elevated calcium level was maintained during by pass.

  • PDF

Electrochemical Degradation of Phenol by Using Reticulated Vitreous Carbon Immobilized Horseradish Peroxidase (Horseradish Peroxidase가 고정화된 다공성 탄소 전극을 이용한 페놀의 전기화학적 분해)

  • Cho, Seung-Hee;Yeon, Kyeong-Ho;Kim, Gha-Young;Shim, Joon-Mok;Moon, Seung-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1263-1269
    • /
    • 2005
  • Horseradish peroxidase, had the phenol degradation rate of 95% in aqueous phase, was covalently immobilized on the surface of reticulated vitreous carbon(RVC) and the degradation of phenol was performed with in situ generated $H_2O_2$-immobilized HRP complex in an electrochemical reactor. The incorporation of carboxylic group on the RVC surface was confirmed by FT/IR spectrometry and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride(EDC) was used for peptide bonds between the carboxylic groups on the RVC surface and amine groups from HRP. The optimal conditions of in situ $H_2O_2$ generation such as concentration($10{\sim}200$ mM) and pH($5.0{\sim}8.0$) of electrolyte, supply of $O_2(10{\sim}50$ mL/min) and applied voltage($-0.2{\sim}-0.8$ volt, vs. Ag/AgCl) from potentiostat/galvanostat were determined by concentration of hydrogen peroxide and current efficiency. It was observed that the RVC immobilized HRP was stable maintaining 89% of the initial activity during 4 weeks. The phenol degradation rate of 86% was attained under the optimal condition of in situ $H_2O_2$ generation.