• Title/Summary/Keyword: Electroluminescence device

Search Result 187, Processing Time 0.042 seconds

Electroluminescence Characteristics of a New Green-Emitting Phenylphenothiazine Derivative with Phenylbenzimidazole Substituent

  • Ahn, Yeonseon;Jang, Da Eun;Cha, Yong-Bum;Kim, Mansu;Ahn, Kwang-Hyun;Kim, Young Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.107-111
    • /
    • 2013
  • A new green-emitting material with donor-acceptor architecture, 3,7-bis(1'-phenylbenzimidazole-2'-yl)-10-phenylphenothiazine (BBPP) was synthesized and its thermal, optical, and electroluminescent characteristics were investigated. Organic light-emitting diodes (OLEDs) with four different multilayer structures were prepared using BBPP as an emitting layer. The optimized device with the structure of [ITO/2-TNATA (40 nm)/BBPP (30 nm)/TPBi (30 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm)] exhibited efficient green emission. Enhanced charge carrier balance and electron mobility in the organic layers enabled the device to demonstrate a maximum luminance of 31,300 cd/$m^2$, a luminous efficiency of 6.83 cd/A, and an external quantum efficiency of 1.62% with the CIE 1931 chromaticity coordinates of (0.21, 0.53) at a current density of 100 mA/$cm^2$.

Blue Organic Light-Emitting Diodes Based on Triphenylene Derivatives

  • Kim, Seul Ong;Jang, Heung Soo;Lee, Seok Jae;Kim, Young Kwan;Yoon, Seung Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2267-2270
    • /
    • 2013
  • A series of blue fluorescent emitters based on triphenylene derivatives were synthesized via the Diels-Alder reaction in moderate yields. The electronic absorption and emission characteristics of the new functional materials were affected by the nature of the substituent on the triphenylene nucleus. Multilayered OLEDs were fabricated with a device structure of: ITO/NPB (50 nm)/EML (30 nm)/Bphen (30 nm)/Liq (2.0 nm)/Al (100 nm). All devices showed efficient blue emissions. Among those, a device using 1 gives the best performances with a high brightness (978 cd $m^{-2}$ at 8.0 V) and high efficiencies (a luminous efficiency of 0.80 cd/A, a power efficiency of 0.34 lm/W and an external quantum efficiency of 0.73% at 20 $mA/cm^2$). The peak wavelength of the electroluminescence was 455 nm with CIEx,y coordinates of (0.17, 0.14) at 8.0 V.

Evaluation of green light Emitting diode with p-type GaN interlayer (P형 GaN 중간층이 삽입된 녹색 발광다이오드 특성 평가)

  • Kim, Eunjin;Kim, Jimin;Jang, Soohwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.274-277
    • /
    • 2016
  • Effects of interlayer insertion between multi-quantum well and electron blocking layer of green light emitting diode on diode performances were studied by device simulation. Dependence of Mg doping depth on characteristics of current-voltage, emitting wavelength, leakage current, and external quantum efficiency was investigated, and the optimum diode structure was presented. Device structures with interlayers doped in entire region and up to 30 nm showed remarkable reduced leakage current and effectively relieved efficiency droop which is one of the biggest challenges in green light emitting diode. Furthermore, the most improved characteristics in current-voltage and electroluminescence was obtained by the latter structure.

Improvement of the LED Performance Using Mg Delta-doing in p Type Cladding Layer for Sensor Application (p 형 반도체 층의 Mg 델타 도핑을 이용한 센서 광원 용 LED의 성능 향상)

  • Kim, Yukyung;Lee, Seungseop;Jeon, Juho;Kim, Mankyung;Jang, Soohwan
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.31-35
    • /
    • 2022
  • The efficacy improvement of the light emitting diode (LED) was studied for the realization of small-size, low power consumption, and highly sensitive bio-sensor instrument. The performance of the LED with Mg delta-doping at the interface of AlGaN/GaN super-lattice in p type cladding layer was simulated. The device with Mg delta-doping showed improved current, radiative recombination rate, electroluminescence, and light output power compared to the conventional LED structure. Under the bias condition of 5 V, the improved device exhibited 20.8% increase in the light output power. This is attributed to the increment of hole concentration from stable ionization of Mg in p type cladding layer. This result is expected to be used for the miniaturization, power saving, and sensitivity improvement of the bio-sensor system.

Electroluminescence Properties of Novel Blue-Emitting Materials Based on Spirobifluorene (Spirobifluorene 그룹을 포함하는 새로운 청색 발광 재료의 전계발광)

  • Sunwoo, Park;Hayoon, Lee;Hyukmin, Kwon;Godi, Mahendra;Sangshin, Park;Seungeun, Lee;Jongwook, Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.94-97
    • /
    • 2023
  • 2,7-bis(3',6'-diphenyl-[1,1':2',1"-terphenyl]-4'-yl)-9,9'-spirobi[fluorene] (BTPSF) and 2,7-bis(1,4-diphenyltriphenylen-2-yl)-9,9'-spirobi[fluorene] (BDTSF) were successfully synthesized as novel blue-emission materials for organic light-emitting diodes (OLEDs) based on the spirobifluorene (SBF) moiety. BTPSF and BDTSF were obtained in high purity via a Diels-Alder reaction, without the use of a catalyst. Photoluminescence spectra of the synthesized materials showed maximum emitting wave-lengths of approximately 381 and 407 nm in solution and 395 and 434 nm in the film state, for BTPSF and BDTSF, respectively, indicating ultra-violet and deep blue emission colors. BDTSF was applied as an emissive layer (EML) in non-doped devices and achieved a current efficiency of 0.61 cd/A and an external quantum efficiency (EQE) of 0.46%.

UV emission characterization of ZnO thin films depending on the variation of oxygen pressure (분위기 산소압변화에 따른 ZnO박막의 UV발광 특성분석)

  • Bae, Sang-Hyuck;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1523-1525
    • /
    • 1999
  • ZnO is a wide-bandgap II-VI semiconductor and has a variety of potential application. ZnO exhibits good piezoelectric, photoelectric and optic properties, and is good for a electroluminescence device. ZnO films have been deposited at (0001) shappire by PLD technique. Chamber was evacuated by turbomolecular pump to a base pressure of $1{\times}10^{-6}$ Torr Nd:YAG pulsed laser was operated at ${\lambda}=355nm$. The ZnO films were deposited at oxygen pressures from base to 500 mTorr. The substrate temperatures was increased from $200^{\circ}C$ to $700^{\circ}C$. At aleady works, UV emission and green-yellow PL was observed. In this work, ZnO films showed UV, violet, green and yellow emissions. UV emission was enhanced by increasing partial oxygen pressure. We investigated relationship between partial oxygen pressure and UV emission.

  • PDF

Effect of Cu concentration on the luminescence of ZnS:Cu,Cl blue-green phosphor

  • Cho, Tai-Yeon;Lee, Hak-Soo;Han, Sang-Do;Gwak, Ji-Hye;Shin, Dong-Hyuk;Han, Chi-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1537-1538
    • /
    • 2007
  • ZnS:Cu,Cl phosphor was synthesized by solid-liquid state reaction with two firing steps. Each stage of the process was carefully monitored so that the final product was comparable to commercially-available phosphor. The effect of $Cu^{2+}-doping$ concentration has been investigated on the luminescence characteristics of ZnS:Cu,Cl blue-green phosphors for inorganic electroluminescent device.

  • PDF

$Cu^{2+}$-addition effect on luminescence of ZnS:Cu,Cl blue-green phosphors

  • Cho, Tae-Yeon;Park, Ja-Il;Han, Sang-Do;Gwak, Ji-Hye;Shin, Dong-Hyuk;Chun, Il-Su;Han, Chi-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.576-577
    • /
    • 2008
  • ZnS:Cu,Cl blue-green phosphors were prepared by conventional solid state reaction. Copper activator of different concentrations was doped into ZnS structure at two firing steps. The luminescence characteristics dependent on $Cu^{2+}$ doping concentration of the phosphors has been investigated for inorganic electroluminescent device.

  • PDF

Deep red electrophosphorescent organic light-emitting diodes based on new iridium complexes

  • Gong, Doo-Won;Kim, Jun-Ho;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1075-1078
    • /
    • 2006
  • New iridium complex was synthesized and demonstrated a deep red light emission in organic light-emitting diodes (OLEDs). The maximum luminance of 8320 cd/m2 at 15 V and the luminance efficiency of 2.5 cd/A at 20 mA/cm2 were achieved. The peak wavelength of the electroluminescence was at 626 nm with the CIE coordinates of (0.69, 0.30), and the device also showed a stable color chromaticity with various voltages.

  • PDF

Enhanced efficiency of organic light-emitting diodes by doping the electrontransport layer

  • Lee, Hyun-Koo;Kwon, Do-Sung;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1410-1412
    • /
    • 2005
  • We present that the electroluminescence (EL) efficiency can be improved by doping an electron transport layer (ETL) with organic materials which can make electron current increase. The electron transport layer of aluminum tris(8 -hydroxyquinoline) (Alq3) is doped with 2-(4-Biphenylyl)-5-(4-tertbutylphenyl)- 1,3,4-oxadiazole) (butyl-PBD) to enhance the electron mobility of the ETL. The higher quantum efficiency of device having ETL using Alq3 doped with butyl-PBD can be attributed to the improved electron and hole balance.

  • PDF