• Title/Summary/Keyword: Electroless plating

Search Result 438, Processing Time 0.028 seconds

Effect of Plating Condition and Plating Rate on the Magnetic Properties of Electroless Co-Cu-P Deposits (무전해 Co-Cu-P 도금층의 자성에 미치는 도금조건과 도금속도의 영향)

  • Oh, I.S.;Park, S.D.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.36-43
    • /
    • 2004
  • The effect of bath composition, plating condition and plating rate on the magnetic property of electroless Co-Cu-P deposits were investigated. With increasing $CuCl_2$ concentration in the bath, plating rate increased, while the Br value of deposit decreased sharply. Deposited surface were inferiority by the increase pH above 10.5, bath temperature higher than $80^{\circ}C$. Plating reaction had been ceased by the increase of pH above 11, bath temperature higher than $90^{\circ}C$ and under $40^{\circ}C$. The Br value of deposit was uniform with various concentration of complexing agent(sodium citrate) in the bath. The Br value of deposit was almost equal to that found by the addition of stabilizer (thiourea) and accelerator(NaF). The Br value of deposit was uniform in plating time(20min) and heat treatment temperature(below $200^{\circ}C$), and were confirmed to have adequate bath stability for practical use.

  • PDF

Effect of pH on electroless nickel plating (무전해 니켈 도금에서 pH에 따른 영향)

  • 정승준;김병춘;박종은;이흥기;박수길
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.625-628
    • /
    • 1999
  • Recently. high-density printed circuit boards(PCB) become indispensable with the minaturization of components. Nickel is deposited on the copper patterns and followed by the gold deposition for improving connection reliability between the printed circuit boards and electronic components. Conventionally electrodeposition has been applied to metalization of copper patterns. However metalization by this method is not applicable for the isolated fine and concentrated patterns. Therefore, metalization technology of the fine patterns by electroless plating is required in place of electrodeposition. The application of electroless nickel plating for interconnection with solder strongly relies on the solderability and the interactions between nickel and solder. Factors such as phosphorus content of the deposit additive and bath temperature may influence solderability of the electroless nickel deposit. So solderability of electroless nickel/ gold deposits was investigated with substrates plated changing the condition of nickel solution.

  • PDF

The Study on Development of Plating Technique on Electroless Ni/Au (무전해 니켈/금도금 기술 개발에 관한 연구)

  • Park Soo-Gil;Park Jong-Eun;Jung Seung-Jun;Yum Jae-Suk;Jun Sae-ho;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.138-143
    • /
    • 1999
  • Recently, miniaturization of large scale integrated circuits (LSI) and printed circuit board (PCB) have become essential with the downsizing of electronic devices. Gold electroplating is applied of conductivity wiring or terminals for improvement of conductivity and corrosion resistance. However, electroplating is not applicable since the circuits are becoming finer and denser. Accordingly, electroless plating is recently highly attractive method because of the simplicity of the operation requiring no external source of current and no elaborate equipment. In this work, we tried to develop a plating technique on electroless Ni/Au plating. First, the electroless Ni plating was deposited on the PCB with agitation in the bath at $85^{\circ}C$. Then the Au layer was deposited on the Ni layer surface by same method at $90^{\circ}C$. The bonderability were tested in order to evaluate the stability of the electroless Ni/Au by gold wire or solder ball test.

Study for Mechanical Properties of Electroless (Ni/Au) Plated Monodisperse Polymer Particles (무전해 (니켈/금) 도금 처리된 단분산 가교고분자 미립자의 기계적 물성 연구)

  • Kim, Dong-Ok;Jin, Jeong-Hee;Shon, Won-Il;Oh, Seok-Heon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.410-416
    • /
    • 2007
  • Monodisperse polymer particles were prepared via one- step seeded polymerization using PMMA as seed particles, and HDDA, triEGDMA or EGDMA as crosslinking monomer. For the study, the effects of 1) the ratio of the absorbed monomer to the seed polymer particles (swelling ratio), 2) the characteristics of crosslinking monomer, 3) electroless Ni plating, and 4) electroless Au Plating on the variation of mechanical properties of polymer particles, such as recovery rate, K-values, breaking strength and breaking displacement were investigated by using MCT (micro compression test). It was observed that swelling ratio of polymer particles influenced only on breaking strength of polymer Particles, while electroless plating did on recovery rate, K-values ($K_{10}\;and\;K_{20}$) and breaking strength of electroless plated polymer particles. However, breaking displacement and K-values ($K_{30}{\sim}K_{50}$) were more or less insensitive to electroless plating.

The Research of Ni/Cu Contact Using Light-induced Plating for Cryatalline Silicom Solar Cells (결정질 실리콘 태양전지에 적용될 Light-induced plating을 이용한 Ni/Cu 전극에 관한 연구)

  • Kim, Min-Jeong;Lee, Soo-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.350-355
    • /
    • 2009
  • The crysralline silicon solar cell where the solar cell market grows rapidly is occupying of about 85% or more high efficiency and low cost endeavors many crystalline solar cells. The fabricaion process of high efficiency crystalline silicon solar cells necessitate complicated fabrication processes and Ti/Pd/AG contact, This metal contacts have only been used in limited areas in spite of their good srability and low contact resistance because of expensive materials and process. Commercial solar cells with screen-printed solar cells formed by using Ag paste suffer from loe fill factor and high contact resistance and low aspect ratio. Ni and Cu metal contacts have been formed by using electroless plating and light-induced electro plating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Copper and Silver can be plated by electro & light-induced plating method. Light-induced plating makes use the photovoltaic effect of solar cell to deposit the metal on the front contact. The cell is immersed into the electrolytic plating bath and irradiated at the front side by light source, which leads to a current density in the front side grid. Electroless plated Ni/ Electro&light-induced plated Cu/ Light-induced plated Ag contact solar cells result in an energy conversion efficiency of 16.446 % on 0.2~0.6${\Omega}$ cm, $20{\times}20mm^2$, CZ(Czochralski) wafer.

  • PDF

Effects of Multi-Complex Agent Addition on Characteristics of Electroless Ni-P Solution (복합 착화제 첨가가 무전해 Ni-P 도금액의 특성에 미치는 영향)

  • Lee, Hong-Kee;Lee, Ho-Nyun;Jeon, Jun-Mi;Hur, Jin-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.111-120
    • /
    • 2010
  • In this study, the effects of multi-complex agents addition on characteristics of electroless Ni plating solution are investigated. The species and the concentration of complexing agents are major factors to control the deposition rate, P concentration, and surface morphology of plating films. Adipic acid increases the deposition rate in regardless of single- or mutli-complex agent addition. However, lactic acid effectively increases the deposition rate in case of multi-addition as the complex agents with adipic or sodium succinate acid. In addition, sodium citric acid and malic acid show good stabilizing effects of plating solution and lowering the deposition rate, because they have high complexibility. Therefore, it is suggested that the development of Ni-P plating solution suitable for diverse usages can be carried out systematically using the database from this study.

Effect of Fabric Structure and Plating Method on EMI Shielding Property of Conductive Fabric (도전섬유의 전자파 차폐특성에 미치는 섬유구조 및 도금방법의 영향)

  • Kim, DongHyun;Lee, SeongJoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.149-157
    • /
    • 2015
  • We investigated the effects of the fabric structure or the kinds of plated metals on the electromagnetic interference shielding effectiveness (EMI SE) by means of electroless plating on polyester fabric. We found that the weight of deposited metal, EMI SE, and flexibility of the conductive fabric for EMI shield is affected by morphology of fabric and structure of fiber. The EMI SE of conductive fabric plated Ni/Cu/Ni by electroless plating method on draw textured yarn (DTY) polyester was in the practically useful range of above 70 dB over a wide frequency range of 10 MHz to 1.0 GHz at the surface resistivity of $0.05{\Omega}/{\square}$. Au or Ag plated conductive fabric by immersion plating method is not able to provide for a good EMI SE.

Electroless Ni-P layer Characteristics in accordance with the plating process conditions (무전해 Ni-P 도금의 공정조건에 따른 도금피막 특성변화)

  • Lee Hong-Kee;Jeon Jun-Mi;Park Hae-Duck
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.3
    • /
    • pp.263-271
    • /
    • 2003
  • Optimal conditions of electroless nickel plating in acid baths has been studied for industrial applications of a developed EN solution. The phosphorus content in the deposition ranges from 8 to $12\;wt.\%$. The investigated EN plating parameters are ion concentrations of nickel and hypophosphite, concentration of reducing and complexing agent, temperature, and pH. The average plating rate of Ni-P deposition was ca. $14{\mu}m/h$. The EN solution used shows a deposition rate of $10{\mu}m/h$ up to seven metal turnovers.

Plating Rate of Electroless Nikel-Copper-Phosphorus Plating and Change in Microhardness and Corrosion Rate depending on. Heat treatment (무전해 니켈-구리-인 도금의 도금속도와 열처리에 따른 경도 및 내삭성 변화)

  • 오이식;황용길
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.4
    • /
    • pp.208-217
    • /
    • 1990
  • Electroless Ni-Cu-P plating was performed was performed to investigate for plating and changes in microhardness and corrosion rate of of electroless deposits depending on heat treatment. The activation energy for $75~85^{\circ}C$ were calculated to be 66.7KJ/mole. Plating rate increased to 34% with addition of 200ppm of NaF and 0.8ppm of thiourea to the bath. The highest hardness value was obtained by heat treatment deposits layer at$ 400^{\circ}C$, 1 hour. The increase in hardness of deposits by heating was confirmed to be associated with crystallization of the amorphous deposits. Corrosion resistance of deposir layer, which had been heated up to $300^{\circ}C$, was found to be exellent when immersed in 1N-H2SO4 solution, Change of the corrosion resistance seems to have some important bearing on content of amorpous, Ni3P and Cu3P.

  • PDF

Studies on Electroless Nickel Plating on Alumina Ceramics(I) on Empirical Deposition Rate in Electroless Nickel Plating (알루미나 세라믹스 표면에 무전해 환원 니켈막의 형성에 관한 연구(I) 무전해 니켈도금의 실험적 석출속도에 관한 연구)

  • Kim, Yong-Dai;Lee, Joon
    • Journal of the Korean institute of surface engineering
    • /
    • v.19 no.3
    • /
    • pp.109-120
    • /
    • 1986
  • The electroless nickel plating on high alumina ceramics was performed in the bath containing nickel chloride, sodium hypophosphite and mono- or bi-carboxylic acid as a complexing agent in order to examine the empirical rate law as well as the effects of the complexing agent, plating temperature and pH on the rate of deposition. Adding the carboxylic acid to the plating bath, the rate of deposition was increased considerably, and each of the complexing agents showed a maximum deposition rate plateau around a particular concentration of the complexing agent. The rate of deposition was increased with increasing either temperature or pH, but microstructure of the surface became more rough. Furthermore, empirical rate law of the elecltroless nickel deposition on high alumina ceramics was discussed with the activation energy and other rate parameters calculated.

  • PDF