• Title/Summary/Keyword: Electroless palladium

Search Result 33, Processing Time 0.021 seconds

A Study on Electroless Palladium Layer Characteristics and Its Diffusion in the Electroless Palladium Immersion Gold (EPIG) Surface Treatment for Fine Pitch Flip Chip Package (미세피치 플립칩 패키지 구현을 위한 EPIG 표면처리에서의 무전해 팔라듐 피막특성 및 확산에 관한 연구)

  • Hur, Jin-Young;Lee, Chang-Myeon;Koo, Seok-Bon;Jeon, Jun-Mi;Lee, Hong-Kee
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.3
    • /
    • pp.170-176
    • /
    • 2017
  • EPIG (Electroless Pd/immersion Au) process was studied to replace ENIG (electroless Ni/immersion Au) and ENEPIG (electroless Ni/electroless Pd/immersion Au) processes for bump surface treatment used in high reliable flip chip packages. The palladium and gold layers formed by EPIG process were uniform with thickness of 125 nm and 34.5 nm, respectively. EPAG (Electroless Pd/autocatalytic Au) also produced even layers of palladium and gold with the thickness of 115 nm and 100 nm. TEM results exhibited that the gold layer in EPIG surface had crystalline structure while the palladium layer was amorphous one. After annealing at 250 nm, XPS analysis indicated that the palladium layer with thickness more than 22~33 nm could act as a diffusion barrier of copper interconnects. As a result of comparing the chip shear strength obtained from ENIG and EPIG surfaces, it was confirmed that the bonding strength was similar each other as 12.337 kg and 12.330 kg, respectively.

Fabrication of Highly Conductive Yarn using Electroless Nickel Plating (무전해 니켈 도금법을 이용한 고성능 도전사의 제조)

  • Hong, So-Ya;Lee, Chang-Hwan;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.22 no.1
    • /
    • pp.77-82
    • /
    • 2010
  • Highly conductive yarn was successfully obtained using electroless nickel plating method with palladium activation. In the presence of palladium seed on surface of fibers as a catalyst, continuos nickel layer produced on surface of fibers by reducing $Ni${2+}$ ion in the electroless plating bath to $Ni^0$. It was found that the Pd-activation using $SnCl_2$ and $PdCl_2$ to deposit palladium seeds on the surface of fibers plays a key role in the subsequent electroless plating of nickel. It also found that electroless nickel plating on the fibers can induce the nickel-plated $ELEX^{(R)}$ fibers to improve the electrical conductivity of the fibers. The thickness of nickel coating layer on the Pd-activated $ELEX^{(R)}$ fibers and specific conductivity of the fiber were increased through electroless plating time. The temperature of nickel plating bath was very effective to enhance the nickel deposition rate.

Effect of Microstructure of Substrate on the Metallization Characteristics of the Electroless Copper Deposition for ULSI Interconnection Effect of Plasma

  • 홍석우;이용선;박종완
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.86-86
    • /
    • 2003
  • Copper has attracted much attention in the deep submicron ULSI metallization process as a replacement for aluminum due to its lower resistivity and higher electromigration resistance. Electroless copper deposition method is appealing because it yields conformal, high quality copper at relatively low cost and a low processing temperature. In this work, it was investigated that effect of the microstructure of the substrate on the electroless deposition. The mechanism of the nucleation and growth of the palladium nuclei during palladium activation was proposed. Electroless copper deposition on TiN barriers using glyoxylic acid as a reducing agent was also investigated to replace toxic formaldehyde. Furthermore, electroless copper deposition on TaN$\sub$x/ barriers was examined at various nitrogen flow rate during TaN$\sub$x/ deposition. Finally, it was investigated that the effect of plasma treatment of as-deposited TaN$\sub$x/ harriers on the electroless copper deposition.

  • PDF

Prevention of Running Blots between the Patterns during the Electroless Nickel Electroless Palladium Immersion Gold (ENEPIG) Surface Finish (무전해 니켈·팔라듐·금도금 표면처리 공정의 도금 번짐 불량 및 개선)

  • Eom, Ki Heon;Seo, Jung-Wook;Won, Yong Sun
    • Clean Technology
    • /
    • v.19 no.2
    • /
    • pp.84-89
    • /
    • 2013
  • The running blots between patterns during electroless nickel electroless palladium immersion gold (ENEPIG) surface finish of printed circuit board (PCB) are investigated and a proper solution is presented. Computational chemistry is first employed to understand the process and experiments are then designed to verify the proposed ideas. A $PdCl_2$ activator which has relatively weak chemical bonding to the epoxy resin is introduced to prevent the formation of palladium seeds on the epoxy resin and a couple of operational measures such as increasing HCl concentration and lowering the temperature of Pd activation process are executed to prevent a further hydrolysis of $PdCl_2$ to more stable $Pd(OH)_2$ in aqueous solution. Computational chemistry provides thermodynamic backgrounds for experiments and their results. This combined approach is expected to be very useful in the research of relevant processes.

Activation Effect on Palladium Electroless Plating of Porous Stainless Steel Support (팔라듐 무전해 도금을 위한 활성화 처리에 대한 연구)

  • 허장은;우상국;서동수;한성욱;한인섭;서두원
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.165-170
    • /
    • 1999
  • Palladium membranes have high selectivity of separation and removal of hydrogen to chemical process at high temperature. For the development of hydrogen permeable membrane, palladium was deposited on porous stainless steel support by electroless plating method. In this work, the activation effect on the surface of stainless steel support has been investigated for the effective palladium plating. The morphology and microstructure were characterized by SEM and the composition was analyzed by EDX. It is found that the composition of deposited nuclei on the stainless steel support was changed in accordance with activation cycles. It is also observed that Sn-enriched nuclei has been changed to Pd-enriched nuclei over the fifteenth activation. The uniform deposition of the dense palladium layer on porous stainless steel support has been performing with Sn-enriched nuclei and comparing with Pd-enriched nuclei.

  • PDF

Evaluation of ENEPIG Surface Treatment for High-reliability PCB in Mobile Module

  • Lee, Joon-Kyun;Yim, Young-Min;Seo, Jun-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.3
    • /
    • pp.142-147
    • /
    • 2010
  • We evaluated characteristics of ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) surface treatment for mobile equipment that requires high reliability, in addition to investigating surface treatment processes for semiconductor boards that require high reliability such as regular PCB-package systems, board-on-chip, chip-scaled package (CSP), etc and application for semiconductor package board of SIP, BOC. As a result, it appeared that ENEPIG has superior properties compared to ENIG surface treatment in corrosion resistance, solder junction, wetting, etc. We anticipate that these results will be able to lend credibility to ENEPIG as a low-cost alternative for producing mobile devices such as the cell phones, especially when applied to mass production.

PCB 표면처리 및 공정 약품 기술 동향

  • Kim, Ik-Beom
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.77-77
    • /
    • 2014
  • 솔더링과 와이어본딩이 가능한 ENEPIG (Electroless Nickel/Electroless Palladium/Immersion Gold) 를 중심으로 미세회로 기판에 적용할 수 있는 표면처리 및 공정 약품을 소개하고자 한다.

  • PDF

GOLD WIRE BONDABILITY OF ELECTROLESS GOLD PLATING USING DISULFITEAURATE COMPLEX

  • Abe, Shinji;Watanabe, Hideto;Igarashi, Yasushi;Honma, Hideo
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.714-719
    • /
    • 1996
  • For the fabrication of the circuits, contact or terminal areas are usually coated with nickel and gold. Usually, diluted palladium solution is applied to initiate electroless nickel plating on the copper circuits. However, the trace amounts of palladium remains on the resin and it causes the extraneous deposition. We confirmed that selectivity was greatly improved by the treatment with the strong reducing agents such as SBH or DMAB. Bondability was greatly influenced by the contents of phosphorus in the deposited nickel. Stabilizers in the electroless gold plating were also influenced the bonding strength. The baths containing cupferron or potassium nickel cyanide as a stabilizer showed superior bondability. The gold deposits having strong orientation with Au(220) and Au(311) showed good bond ability.

  • PDF

A Study on electroless palladium layer characteristics and its diffusion in the electroless palladium immersion gold(EPIG) surface treatment (EPIG 표면처리에서의 무전해 팔라듐 피막 특성 및 확산에 관한 연구)

  • Heo, Jin-Yeong;Lee, Chang-Myeon;Gu, Seok-Bon;Jeon, Jun-Mi;Lee, Hong-Gi;Heo, Uk-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.120.2-120.2
    • /
    • 2017
  • 본 연구에서는 고신뢰성 인쇄회로기판이나 플립칩 패키지에 적용되는 범프 표면처리에서 널리 사용되는, ENIG나 ENEPIG 대체를 위한 electroless Pd/immersion Au(EPIG)에 대하여 연구하였다. Transmission electron microscopy(TEM) 분석 결과 형성된 Au layer는 crystalline, Pd layer는 amorphous 임을 확인하였으며, 열처리 후 X-Ray photoelectron spectroscopy(XPS)를 통하여 EPIG층이 하부 copper의 확산방지막으로서 효과가 있음을 알 수 있었다. 또한, 비정질 Pd layer가 확산을 방지하기 위하여는 일정수준 이상의 두께가 필요하며, 그 두께는 35~65nm 수준임을 알 수 있었다.

  • PDF

Standardization of Bending Impact Test Methods of Sn-Ag-Cu Lead Free Solder Ball (Sn-Ag-Cu계 무연 솔더볼 접합부의 굽힘충격 시험방법 표준화)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • An impact bending test method was used to evaluate the reliability for the solder joint of lead-free solder ball. In order to standardize the test method, the four point impact bending test was applied under the conditions of various frequencies and amounts of +/-amplitude respectively. Effects on the results were analysed. The optimum condition for impact bending test achieved in this study was the frequency of 10 Hz, and the amplitude of (+12/-1)~(+15/-1). 3 kinds of surface finishes Cu-OSP (Organic Solderability Preservative), ENIG (Electroless Nickel Immersion Gold), and ENEPIG (Electroless Nickel, Electroless Palladium, Immersion Gold) were used. Fracture surface showed that cracks were initiated and fractured along the intermetallic layer in the case of surface finishes of Cu-OSP and ENIG, while in the case of ENEPIG the cracks were initiated and propagated in the solder region.