• Title/Summary/Keyword: Electroless Ni

Search Result 309, Processing Time 0.022 seconds

Effect of Ultrasonic Process of Electroless Ni-P-Al2O3 Composite Coatings

  • Yoon, Jin-Doo;Koo, Bon-Heun;Hwang, Hwan-Il;Seo, Sun-Kyo;Park, Jong-Kyu
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.6
    • /
    • pp.315-323
    • /
    • 2021
  • In general, surface treatments of electroless Ni-P coating are extensively applied in the industry due to their excellent properties for considerable wear resistance, hardness, corrosion resistance. This study aims to determine the effect of ultrasonic conditions on the morphology, alumina content, roughness, hardness, and corrosion resistance of electroless Ni-P-Al2O3 composite coatings. The characteristics were analyzed by Energy-dispersive X-ray spectroscopy (EDX), x-ray diffractions (XRD), and atomic force microscopy (AFM), etc. In this study, the effect of ultrasonic condition uniformly distributed alumina within Ni-P solution resulting in a smoother surface, lower surface roughness. Furthermore, the corrosion resistance behavior of the coating was analyzed using tafel polarization curves in a 3.5 wt.% NaCl solution at 25 ℃. Under ultrasonic, Al2O3 content in Ni-P composite solution increased from 0.5 to 5.0 g/L, Al2O3 content at 3.0 g/L was showed a significantly enhanced corrosion resistance. These results suggested that ultrasonic condition was an effective method to improve the properties of the composite coating.

The Effect of Complexing Agents on the Deposit Characteristics in the Electroless Nickel-Tungsten-Phosphorus Plating (무전해 Ni-W-P 도금에서 착화제의 종류가 피막특성에 미치는 영향)

  • Cho, Jin Ki;Park, Sang Wook;Kang, Seung Goon;Son, Seong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.725-729
    • /
    • 2008
  • Deposition characteristics of electroless plated Ni-W-P films were investigated for various complexing agents. Used complexing agents are sodium citrate, sodium gluconate and sodium malonate. In this study, the existing mixed potential theory could explain the overall mechanism of Ni-W-P electroless plating for all complexing agents. The deposition rate could be also expected by the theory. The deposited Ni-W-P films were evaluated in term of surface hardness and corrosion resistance. Microhardness of the deposit increased about 1,000 Hv after heat treatment for one hour at $400^{\circ}C$, because it was above the crystallization temperature of $Ni_3P$. The deposited Ni-W-P films can exhibit excellent corrosion resistance in using sodium malonate as a complexing agent, the other hand the using sodium gluconate was the worst corrosion resistance. The worst corrosion resistance was due to a large number of nano-sized pin-holes or small pores. The plating current at the mixed potential increases when the using sodium malonate as a complexing agent, it was explained by the cross section.

Improvement of Electrical Properties by Controlling Nickel Plating Temperatures for All Solid Alumina Capacitors

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • Recently, thin film capacitors used for vehicle inverters are small size, high capacitance, fast response, and large capacitance. But its applications were made up of liquid as electrolyte, so its capacitors are limited to low operating temperature range and the polarity. This research proposes using Ni-P alloys by electroless plating as the electrode instead of liquid electrode. Our substrate has a high aspect ratio and complicated shape because of anodic aluminum oxide (AAO). We used AAO because film thickness and effective surface area are depended on for high capacitance. As the metal electrode instead of electrolyte is injected into AAO, the film capacitor has advantages high voltage, wide operating temperature, and excellent frequency property. However, thin film capacitor made by electroless-plated Ni on AAO for full-filling into etched tunnel was limited from optimizing the deposition process so as to prevent open-through pore structures at the electroless plating owing to complicated morphological structure. In this paper, the electroless plating parameters are controlled by temperature in electroless Ni plating for reducing reaction rate. The Electrical properties with I-V and capacitance density were measured. By using nickel electrode, the capacitance density for the etched and Ni electroless plated films was 100 nFcm-2 while that for a film without any etch tunnel was 12.5 nFcm-2. Breakdown voltage and leakage current are improved, as the properties of metal deposition by electroless plating. The synthesized final nanostructures were characterized by scanning electron microscopy (SEM).

  • PDF

Effects of the Electroless Ni-P Thickness and Assembly Process on Solder Ball Joint Reliability (무전해 Ni-P 두께와 Assembly Process가 Solder Ball Joint의 신뢰성에 미치는 영향)

  • Lee, Ji-Hye;Huh, Seok-Hwan;Jung, Gi-Ho;Ham, Suk-Jin
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.60-67
    • /
    • 2014
  • The ability of electronic packages and assemblies to resist solder joint failure is becoming a growing concern. This paper reports on a study of high speed shear energy of Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder with different electroless Ni-P thickness, with $HNO_3$ vapor's status, and with various pre-conditions. A high speed shear testing of solder joints was conducted to find a relationship between the thickness of Ni-P deposit and the brittle fracture in electroless Ni-P deposit/SAC405 solder interconnection. A focused ion beam (FIB) was used to polish the cross sections to reveal details of the microstructure of the fractured pad surface with and without $HNO_3$ vapor treatment. A scanning electron microscopy (SEM) and an energy dispersive x-ray analysis (EDS) confirmed that there were three intermetallic compound (IMC) layers at the SAC405 solder joint interface: $(Ni,Cu)_3Sn_4$ layer, $(Ni,Cu)_2SnP$ layer, and $(Ni,Sn)_3P$ layer. The high speed shear energy of SAC405 solder joint with $3{\mu}m$ Ni-P deposit was found to be lower in pre-condition level#2, compared to that of $6{\mu}m$ Ni-P deposit. Results of focused ion beam and energy dispersive x-ray analysis of the fractured pad surfaces support the suggestion that the brittle fracture of $3{\mu}m$ Ni-P deposit is the result of Ni corrosion in the pre-condition level#2 and the $HNO_3$ vapor treatment.

Retardation of Massive Spalling by Palladium Layer Addition to Surface Finish (팔라듐 표면처리를 통한 Massive Spalling 현상의 억제)

  • Lee, Dae-Hyun;Chung, Bo-Mook;Huh, Joo-Youl
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1041-1046
    • /
    • 2010
  • The reactions between a Sn-3.0Ag-0.5Cu solder alloy and electroless Ni/electroless Pd/immersion Au (ENEPIG) surface finishes with various Pd layer thicknesses (0, 0.05, 0.1, 0.2, $0.4{\mu}m$) were examined for the effect of the Pd layer on the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow at $235^{\circ}C$. The thin layer deposition of an electroless Pd (EP) between the electroless Ni ($7{\mu}m$) and immersion Au ($0.06{\mu}m$) plating on the Cu substrate significantly retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow. Its retarding effect increased with an increasing EP layer thickness. When the EP layer was thin (${\leq}0.1{\mu}m$), the retardation of the massive spalling was attributed to a reduced growth rate of the $(Cu,Ni)_6Sn_5$ layer and thus to a lowered consumption rate of Cu in the bulk solder during reflow. However, when the EP layer was thick (${\geq}0.2{\mu}m$), the initially dissolved Pd atoms in the molten solder resettled as $(Pd,Ni)Sn_4$ precipitates near the solder/$(Cu,Ni)_6Sn_5$ interface with an increasing reflow time. Since the Pd resettlement requires a continuous Ni supply across the $(Cu,Ni)_6Sn_5$ layer from the Ni(P) substrate, it suppressed the formation of $(Ni,Cu)_3Sn_4$ at the $(Cu,Ni)_6Sn_5/Ni(P)$ interface and retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer.

TEM Microstructure of Al2O3/Ni Nanocomposites by Electroless Deposition (무전해코팅법으로 제조한 Al2O3/Ni 나노 Composite의 TEM 미세조직)

  • 한재길;이재영;김택수;이병택
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.195-200
    • /
    • 2003
  • Ni coated $Al_2O_3$ composite was successfully Prepared by the electroless deposition Process. The average size of Ni particles coated on the $Al_2O_3$ matrix powder was about 20 nm. It was hard to find any reaction compound as an impurity at interface between $Al_2O_3$ and Ni particles after sintering. The characterization of microstructure crystal structure and fracture behavior of the sintered body were investigated using XRD, TEM and Victors hardness tester, and compared with those of the sintered $Al_2O_3$ monolithic body. Many dislocations were observed in the Ni phase due to the difference of thermal expansion coefficient between $Al_2O_3$ and Ni phase, and no observed microcracks at their $Al_2O_3$ and Ni interface. In the $Al_2O_3$/Ni composite, the main fracture mode showed a mixed fracture with intergranular and transgranuluar type having some ,surface roughness. The fracture toughness was slightly increased due to the plastic deformation mechanism of Ni phase in the $Al_2O_3$/Ni composite.

Effect of Phase Transformation Behavior of Electroless Nickel Plating Layer on Corrosion and Cavitation-Erosion with Heat Treatment (열처리에 따른 무전해 니켈 도금 층의 상변태 거동이 부식과 캐비테이션 침식에 미치는 영향)

  • Il-Cho Park;Seong-Jong Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.64-71
    • /
    • 2024
  • The objective of this study was to investigate corrosion and cavitation-erosion characteristics of the electroless nickel plating layer with heat treatment. The crystallization temperature of the electroless nickel plating layer was about 410 ℃. The phase transformation energy was confirmed to be 12.66 J/g. With increasing heat treatment temperature, the amorphous electroless nickel plating layer gradually changed to crystalline Ni and Ni3P. At the same time, the crystal grain size was also increased. Additionally, when heat treatment was performed at a temperature above 400 ℃, NiO phase was observed due to oxidation phenomenon. As a result of the electrochemical polarization experiment, the corrosion resistance of the heat-treated electroless nickel plating layers was superior to that of the as-deposited plating layer. This was because crystal grains became larger and grain boundaries decreased during heat treatment. The cavitation-erosion resistance of heat-treated plating layers tended to be superior to that of as-deposited plating layers due to increased microhardness.

Fiber surface and electrical conductivity of electroless Ni-plated PET ultra-fine fibers

  • Choi, Woong-Ki;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.243-246
    • /
    • 2013
  • In this work, electroless Ni-plating on polyethylene terephthalate (PET) ultra-fine fibers surfaces was carried out to improve the electric conductivity of the fiber. The surface properties of PET ultra-fine fibers were characterized using scanning electron microscopy, X-ray diffraction, and contact angle analyses. The electric conductivity of the fibers was measured using a 4-point testing method. The experimental results revealed the presence of island-like nickel clusters on the PET ultra-fine fibers surfaces in the initial plating state, and the electric conductivity of the Ni-plated fibers was enhanced with increasing plating time and thickness of the Ni-layers on the PET ultra-fine fibers.

A Study of Joint Reliability According to Various Cu Contents between Electrolytic Ni and Electroless Ni Pad Finish (전해Ni, 무전해 Ni pad에서의 Cu 함량에 따른 접합 신뢰성에 관한 연구)

  • Lee, Hyun Kyu;Chun, Myung Ho;Chu, Yong Chul;Oh, Kum-Sool
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.51-56
    • /
    • 2015
  • It has been used various pad finish materials to enhance the reliability of solder joint and recently Electroless Ni Electroless Pd Immersion Gold (the following : ENEPIG) pad has been used more than others. This study is about reliability according to being used in commercial Electrolytic Ni pad and ENEPIG pad, and was observed behavior of various Cu contents. After reflow, the inter-metallic compound (IMC) between solder and pad is composed of $Cu_6Sn_5$ (Ni substituted) by using EDS, and in case of ENEPIG, between IMC and Ni layer was observed the dark layer ($Ni_3P$ layer). Additional, it could be controlled the thickness of dark layer according to Cu contents. Investigated the different fracture mode between electrolytic Ni and ENEPIG pad after drop shock test, in case of soft Ni, accelerated stress propagated along the interface between $1^{st}$ IMC and $2^{nd}$ IMC, and in case of ENEPIG pad, accelerated stress propagated along the weaken surface such as dark layer. The unstable interface exists through IMC, pad material and solder bulk by the lattice mismatch, so that the thermal and physical stress due to the continuous exterior impact is transferred to the IMC interface. Therefore, it is strongly requested to control solder morphology, IMC shape and thickness to improve the solder reliability.

The Study on Development of Plating Technique on Electroless Ni/Au (무전해 니켈/금도금 기술 개발에 관한 연구)

  • Park Soo-Gil;Park Jong-Eun;Jung Seung-Jun;Yum Jae-Suk;Jun Sae-ho;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.138-143
    • /
    • 1999
  • Recently, miniaturization of large scale integrated circuits (LSI) and printed circuit board (PCB) have become essential with the downsizing of electronic devices. Gold electroplating is applied of conductivity wiring or terminals for improvement of conductivity and corrosion resistance. However, electroplating is not applicable since the circuits are becoming finer and denser. Accordingly, electroless plating is recently highly attractive method because of the simplicity of the operation requiring no external source of current and no elaborate equipment. In this work, we tried to develop a plating technique on electroless Ni/Au plating. First, the electroless Ni plating was deposited on the PCB with agitation in the bath at $85^{\circ}C$. Then the Au layer was deposited on the Ni layer surface by same method at $90^{\circ}C$. The bonderability were tested in order to evaluate the stability of the electroless Ni/Au by gold wire or solder ball test.