• Title/Summary/Keyword: Electroless Au plating

Search Result 31, Processing Time 0.025 seconds

Ni/Au Electroless Plating for Solder Bump Formation in Flip Chip (Flip Chip의 Solder Bump 형성을 위한 Ni/Au 무전해 도금 공정 연구)

  • Jo, Min-Gyo;O, Mu-Hyeong;Lee, Won-Hae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.700-708
    • /
    • 1996
  • Electroless plating technique was utilized to flip chip bonding to improve surface mount characteristics. Each step of plating procedure was studied in terms pf pH, plating temperature and plating time. Al patterned 4 inch Si wafers were used as substrstes and zincate was used as an activation solution. Heat treatment was carried out for all the specimens in the temperature range from room temperature to $400^{\circ}C$ for $30^{\circ}C$ minutes in a vacuum furnace. Homogeneous distribution of Zn particles of size was obtained by the zincate treatment with pH 13 ~ 13.5, solution concentration of 15 ~ 25% at room temperature. The plating rates for both Ni-P and Au electroless plating steps increased with increasing the plating temperature and pH. The main crystallization planes of the plated Au were found to be (111) a pH 7 and (200) and (111) at pH 9 independent of the annealing temperature.

  • PDF

Wastewater Recycling from Electroless Printed Circuit Board Plating Process Using Membranes (분리막을 이용한 무전해 PCB 도금 폐수의 재활용)

  • 이동훈;김래현;정건용
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2003
  • Membrane process was investigated to recover process water and valuable gold from washing water of electroless PCB plating processes. The filtration experiments were carried out using not only a RO membrane test cell to determine suitable membrane for washing water but also spiral wound membrane modules of nanofiltration and reverse osmosis for scale-up. At first, RO-TL(tap water, low pressure), RO-BL(brackish water, low pressure) and RO-normal(for water purifier) sheet membranes made by Saehan Co. were tested, and the performance of RO-TL membrane showed most suitable f3r recovery of soft etching, catalyst and Ni washing waters. As a result of RO test cell, the experiments for scale-up were carried out using RO-TL modules far water purifier at 7bar and $25^{\circ}C $The permeate flux fur Au washing water was about 30 LMH, but Au rejection was less than 80%. The permeate fluxes for Pd, Ni and soft etching washing water were about 22, 17 and 10 LMH, respectively. The Pd, Ni and Cu rejections showed more than 85, 97 and 98% respectively. The nanofiltration module for water purifier was introduced to recover Au selectively from Au, Ni and Cu ions in Au washing water. Most of Ni and Cu ions in the feed washing water were removed, and only Au ion was existed 81.9% in the permeate. Furthermore, Au ion in the permeate was concentrated and recovered by RO-TL membrane module. Finally, Au was also able to recover effectively by using 4 inch diameter spiral wound modules of NF and RO-TL membranes, in series.

Retardation of Massive Spalling by Palladium Layer Addition to Surface Finish (팔라듐 표면처리를 통한 Massive Spalling 현상의 억제)

  • Lee, Dae-Hyun;Chung, Bo-Mook;Huh, Joo-Youl
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1041-1046
    • /
    • 2010
  • The reactions between a Sn-3.0Ag-0.5Cu solder alloy and electroless Ni/electroless Pd/immersion Au (ENEPIG) surface finishes with various Pd layer thicknesses (0, 0.05, 0.1, 0.2, $0.4{\mu}m$) were examined for the effect of the Pd layer on the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow at $235^{\circ}C$. The thin layer deposition of an electroless Pd (EP) between the electroless Ni ($7{\mu}m$) and immersion Au ($0.06{\mu}m$) plating on the Cu substrate significantly retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer during reflow. Its retarding effect increased with an increasing EP layer thickness. When the EP layer was thin (${\leq}0.1{\mu}m$), the retardation of the massive spalling was attributed to a reduced growth rate of the $(Cu,Ni)_6Sn_5$ layer and thus to a lowered consumption rate of Cu in the bulk solder during reflow. However, when the EP layer was thick (${\geq}0.2{\mu}m$), the initially dissolved Pd atoms in the molten solder resettled as $(Pd,Ni)Sn_4$ precipitates near the solder/$(Cu,Ni)_6Sn_5$ interface with an increasing reflow time. Since the Pd resettlement requires a continuous Ni supply across the $(Cu,Ni)_6Sn_5$ layer from the Ni(P) substrate, it suppressed the formation of $(Ni,Cu)_3Sn_4$ at the $(Cu,Ni)_6Sn_5/Ni(P)$ interface and retarded the massive spalling of the $(Cu,Ni)_6Sn_5$ layer.

FLIP CHIP ON ORGANIC BOARD TECHNOLOGY USING MODIFIED ANISOTROPIC CONDUCTIVE FILMS AND ELECTROLESS NICKEL/GOLD BUMP

  • Yim, Myung-Jin;Jeon, Young-Doo;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.13-21
    • /
    • 1999
  • Flip chip assembly directly on organic boards offers miniaturization of package size as well as reduction in interconnection distances resulting in a high performance and cost-competitive Packaging method. This paper describes the investigation of alternative low cost flip-chip mounting processes using electroless Ni/Au bump and anisotropic conductive adhesives/films as an interconnection material on organic boards such as FR-4. As bumps for flip chip, electroless Ni/Au plating was performed and characterized in mechanical and metallurgical point of view. Effect of annealing on Ni bump characteristics informed that the formation of crystalline nickel with $Ni_3$P precipitation above $300^{\circ}C$ causes an increase of hardness and an increase of the intrinsic stress resulting in a reliability limitation. As an interconnection material, modified ACFs composed of nickel conductive fillers for electrical conductor and non-conductive inorganic fillers for modification of film properties such as coefficient of thermal expansion(CTE) and tensile strength were formulated for improved electrical and mechanical properties of ACF interconnection. The thermal fatigue life of ACA/F flip chip on organic board limited by the thermal expansion mismatch between the chip and the board could be increased by a modified ACA/F. Three ACF materials with different CTE values were prepared and bonded between Si chip and FR-4 board for the thermal strain measurement using moire interferometry. The thermal strain of ACF interconnection layer induced by temperature excursion of $80^{\circ}C$ was decreased with decreasing CTEs of ACF materials.

  • PDF

Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 2. Effects of time of Pd activation (ENEPIG 표면처리에서의 Sn-Ag-Cu 솔더조인트 신뢰성: 2. Pd 촉매 시간의 영향)

  • Huh, Seok-Hwan;Lee, Ji-Hye;Ham, Suk-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.51-56
    • /
    • 2014
  • The reliability of solder joint is significantly affected by the property of surface finish. This paper reports on a study of high speed shear energy and failure mode for Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder joints with the time of Pd activation. The nodule size of electroless Ni-P deposit increased with increasing the time of Pd activation. The roughness (Ra) of electroless Ni-P deposit decreased with increasing the time of Pd activation. Then, with $HNO_3$ vapor, the quasi-brittle and brittle mode of SAC405 solder joint decreased with increasing the time of Pd activation. This results indicate that the increase in the Pd activation time for Electroless Ni/ Electroless Pd/ Immersion Au (ENEPIG) surface finish play a critical role for improving the robustness of SAC405 solder joint.

On-Channel Micro-Solid Phase Extraction Bed Based on 1-Dodecanethiol Self-Assembly on Gold-Deposited Colloidal Silica Packing on a Capillary Electrochromatographic Microchip

  • Park, Jongman;Kim, Shinseon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.45-50
    • /
    • 2014
  • A fully packed capillary electrochromatographic (CEC) microchip with an on-column micro-solid phase extraction (SPE) bed for the preconcentration and separation of organic analytes was prepared. A linear microchannel with monodisperse colloidal silica packing was formed on a cyclic olefinic copolymer microchip with two reservoirs on both ends. Silver-cemented silica packing frit structure was formed at the entrance of the microchannel by electroless plating treatment as a base layer. A gold coating was formed on it by reducing $Au^{3+}$ to gold with hydroxylamine. Finally micro-SPE bed was formed by self-assembly adsorption of 1-dodecanethiol on it. Micro-SPE beds were about 100-150 ${\mu}m$ long. Approximately $10^3$ fold sensitivity enhancements for Sulforhodamine B, and Fluorescein in nM concentration levels were possible with 80 s preconcentration. Basic extraction characteristics were studied.

A study on the interfacial reactions between electroless Ni-P UBM and 95.5Sn-4.0Ag-0.5Cu solder bump (무전해 Ni-P UBM과 95.5Sn-4.0Ag-0.5Cu 솔더와의 계면반응 및 신뢰성에 대한 연구)

  • ;;Sabine Nieland;Adreas Ostmann;Herbert Reich
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.85-91
    • /
    • 2002
  • Even though electroless Hi and Sn-Ag-Cu solder are widely used materials in electronic packaging applications, interfacial reactions of the ternary Ni-Cu~Sn system have not been known well because of their complexity. Because the growth of intermetallics at the interface affects reliability of solder joint, the intermetallics in Ni-Cu-Sn system should be identified, and their growth should be investigated. Therefore, in present study, interfacial reactions between electroless Ni UB7f and 95.5Sn-4.0Ag-0.5Cu alloy were investigated focusing on morphology of the IMCs, thermodynamics, and growth kinetics. The IMCs that appear during a reflow and an aging are different each other. In early stage of a reflow, ternary IMC whose composition is Ni$_{22}$Cu$_{29}$Sn$_{49}$ forms firstly. Due to the lack of Cu diffusion, Ni$_{34}$Cu$_{6}$Sn$_{60}$ phase begins growing in a further reflow. Finally, the Ni$_{22}$Cu$_{29}$Sn$_{49}$ IMC grows abnormally and spalls into the molten solder. The transition of the IMCs from Ni$_{22}$Cu$_{29}$Sn$_{49}$ to Ni$_{34}$Cu$_{6}$Sn$_{60}$ was observed at a specific temperature. From the measurement of activation energy of each IMC, growth kinetics was discussed. In contrast to the reflow, three kinds of IMCs (Ni$_{22}$Cu$_{29}$Sn$_{49}$, Ni$_{20}$Cu$_{28}$Au$_{5}$, and Ni$_{34}$Cu$_{6}$Sn$_{60}$) were observed in order during an aging. All of the IMCs were well attached on UBM. Au in the quaternary IMC, which originates from immersion Au plating, prevents abnormal growth and separation of the IMC. Growth of each IMC is very dependent to the aging temperature because of its high activation energy. Besides the IMCs at the interface, plate-like Ag3Sn IMC grows as solder bump size inside solder bump. The abnormally grown Ni$_{22}$Cu$_{29}$Sn$_{49}$ and Ag$_3$Sn IMCs can be origins of brittle failure.failure.

  • PDF

Application of Ni-P-PTFE Coatings for Preventing Fretting Corrosion (마찰부식 방지를 위한 Ni-P-PTFE 코팅의 적용)

  • Hong, Jin-Won;Lee, Keun-Woo;Bae, Kyoo-Sik
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.430-434
    • /
    • 2006
  • Au/Ni coatings are widely used in the electrical interconnect system, such as connectors, sockets and wire crimps. But due to repeated mechanical contacts, fretting corrosion occurs and causes a rapid increase in resistance. As an attempt to resolve these problem, application of Ni-P-PTFE to replace Ni undercoats was proposed, for which basic materials properties of Ni-P-PTFE coatings for preventing fretting corrosion was examined in this study. The Ni-P-PTFE coatings were formed by electroless Ni plating and PTFE coating followed by the heat-treatment. PTFE particles were found to be uniformly distributed in the Ni-P matrix. The Ni-P-PTFE coatings showed the excellent anti-adherent property with the contact angle of $104.3^{\circ}$, microhardness of 144.3 Hv comparable to that of Ni-P, and electric conductivity equivalent to that of Ni-P.

Reliability Investigation and Interfacial Reaction of BGA packages Using the Pb-free Sn-Zn Solder (Sn-Zn 무연솔더를 사용한 BGA패키지의 계면반응 및 신뢰성 평가)

  • Jeon, Hyeon-Seok;Yun, Jeong-Won;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.25-27
    • /
    • 2005
  • Sn-9Zn solder balls were bonded to Cu and ENIG (Electroless Nickel/Immersion Gold) pads, and the effect of aging on their joint reliability was investigated. The interfacial products were different from the general reaction layer formed in a Sn-base solder. The intermetallic compounds formed in the solder/Cu joint were $Cu_{5}Zn_{8}$ and $Cu_{6}Sn_{5}$. After aging treatment, voids formed irregularly at the bottom side of the solder because of Sn diffusion into the $Cu_{5}Zn_{8}$ IMC. In the case of the solder/ENIG joint, $AuZn_{3}$ IMCs were formed at the interface. In the case of the Sn-9Zn/ENIG, the shear strength remained nearly constant in spite of aging for 1000 hours at $150^{\circ}C$. On the other hand, in the case of the Sn-9Zn/Cu, the shear strength significantly decreased after aging at $150^{\circ}C$ for 100hours and then remained constant by further prolonged aging. Therefore, the protective plating layer such as ENIG must be used to ensure the mechanical reliability of the Sn-9Zn/Cu joint.

  • PDF

Reliability of Sn-Ag-Cu Solder Joint on ENEPIG Surface Finish: 1. Effects of thickness and roughness of electroless Ni-P deposit (ENEPIG 표면처리에서의 Sn-Ag-Cu 솔더조인트 신뢰성: 1. 무전해 Ni-P도금의 두께와 표면거칠기의 영향)

  • Huh, Seok-Hwan;Lee, Ji-Hye;Ham, Suk-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2014
  • By the trends of electronic package to be smaller, thinner and more integrative, the reliability of interconnection between Si chip and printed circuit board is required. This paper reports on a study of high speed shear energy of Sn-4.0wt%Ag-0.5wt%Cu (SAC405) solder joints with different the thicknesses of electroless Ni-P deposit. A high speed shear testing of solder joints was conducted to find a relationship between the thickness of Ni-P deposit and the brittle fracture in electroless Ni-P deposit/SAC405 solder. A focused ion beam (FIB) was used to polish the cross sections to reveal details of the microstructure of the fractured pad surface with and without $HNO_3$ vapor treatment. The high speed shear energy of SAC405 solder joint with $1{\mu}m$ Ni-P deposit was found to be lower without $HNO_3$ vapor, compared to those of over $3{\mu}m$ Ni-P deposit. This could be due to the edge of solder resist in $1{\mu}m$ Ni-P deposit, which provides a fracture location for the weakened shear energy of solder joints and brittle fracture in high speed shear test. With $HNO_3$ vapor, the brittle fracture mode in high speed shear test decreased with increasing the thickness of Ni-P deposit. Then the roughness (Ra) of Ni-P deposits decreased with increasing its thickness. Thus, this gives the evidence that the decrease in roughness of Ni-P deposit for Eelectroless Ni/ Electroless Pd/ Immersion Au (ENEPIG) surface play a critical role for improving the robustness of SAC405 solder joint.