• Title/Summary/Keyword: Electroforming

Search Result 126, Processing Time 0.032 seconds

Variation of the Magnetic Properties of Electrodeposited CoP Nanowire Arrays According to Their Size and Microstructure (CoP나노선재의 자기적 성질에 미치는 미세구조와 크기 효과)

  • Kim, Yi J.;Lee, Kwan H.;Jeung, Won Y.;Kim, Kwang B.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.208-211
    • /
    • 2003
  • We have investigated the dimensional and microstructural dependence of magnetic properties of CoP nano-wire arrays fabricated by electrodeposition on AAO(anodic aluminum oxide) templates with different-size nanopores. Our results indicate that the magnetic properties of nanowire arrays can be varied with their dimensions and microstructures. As for the CoP nanowire arrays with the diameter of 20nm, it was found to have the coercivity more than 2.6kOe due to the shape anisotropy and squareness(Mr/Ms) of $\~0.8$. The CoP nanowire arrays with the diameter of 200m, however, showed very different magnetic properties depending on the current densities. Nanowires fabricated at $5mA/cm^2$ had stronger tendency to have the preferred crystallographic orientation of (002) parallel to the nanowire than those fabricated at $35mA/cm^2$ These microstructural differences are the reason why CoP nanowire arrays prepared at different current densities exhibited different magnetic properties.

Improvement of Reliability by Using Fluorine Doped Tin Oxide Electrode for Ta2O5 Based Transparent Resistive Switching Memory Devices

  • Lee, Do Yeon;Baek, Soo Jung;Ryu, Sung Yeon;Choi, Byung Joon
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Purpose: Fluorine doped tin oxide (FTO) bottom electrode for $Ta_2O_5$ based RRAM was studied to apply for transparent resistive switching memory devices owing to its superior transparency, good conductivity and chemical stability. Methods: $ITO/Ta_2O_5/FTO$ (ITF) and $ITO/Ta_2O_5/Pt$ (ITP) devices were fabricated on glass and Si substrate, respectively. UV-visible (UV-VIS) spectroscopy was used to examine transparency of the ITF device and its band gap energy was determined by conventional Tauc plot. Electrical properties, such as electroforming and voltage-induced RS characteristics were measured and compared. Results: The device with an FTO bottom electrode showed good transparency (>80%), low forming voltage (~-2.5V), and reliable bipolar RS behavior. Whereas, the one with Pt electrode showed both bipolar and unipolar RS behaviors unstably with large forming voltage (~-6.5V). Conclusion: Transparent and conducting FTO can successfully realize a transparent RRAM device. It is concluded that FTO electrode may form a stable interface with $Ta_2O_5$ switching layer and plays as oxygen ion reservoir to supply oxygen vacancies, which eventually facilitates a stable operation of RRAM device.

MATERIAL RELIABILITY OF Ni ALLOY ELECTRODEPOSITION FOR STEAM GENERATOR TUBE REPAIR

  • Kim, Dong-Jin;Kim, Myong-Jin;Kim, Joung-Soo;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.231-236
    • /
    • 2007
  • Due to the occasional occurrences of stress corrosion cracking(SCC) in steam generator tubing(Alloy 600), degraded tubes are removed from service by plugging or are repaired for re-use. Since electrodeposition inside a tube does not entail parent tube deformation, residual stress in the tube can be minimized. In this work, tube restoration via electrodeposition inside a steam generator tubing was performed after developing the following: an anode probe to be installed inside a tube, a degreasing condition to remove dirt and grease, an activation condition for surface oxide elimination, a tightly adhered strike layer forming condition between the electro forming layer and the Alloy 600 tube, and the condition for an electroforming layer. The reliability of the electrodeposited material, with a variation of material properties, was evaluated as a function of the electrodeposit position in the vertical direction of a tube using the developed anode. It has been noted that the variation of the material properties along the electrodeposit length was acceptable in a process margin. To improve the reliability of a material property, the causes of the variation occurrence were presumed, and an attempt to minimize the variation has been made. A Ni alloy electrodeposition process is suggested as a primary water stress corrosion cracking(PWSCC) mitigation method for various components, including steam generator tubes. The Ni alloy electrodeposit formed inside a tube by using the installed assembly shows proper material properties as well as an excellent SCC resistance.

SHEAH BOND STRENGTH OF VENEERING CERAMIC TO ELECTROFORMED GOLD WITH THREE DIFFERENT SURFACE TREATMENT (표면처리방법에 따른 전기성형금속의 도재결합강도)

  • Kim Cheol;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.599-610
    • /
    • 2005
  • Purpose: The success of the bonding between electroformed gold and ceramic is dependent on the surface treatment of the pure gold coping. The purpose of this study was to evaluate the bonding strength between the electroformed gold and ceramic with varying surface treatment. Materials and methods: A total of 32 disks,8 were using conventional ceramometal alloy, 24 were using electroforming technique as recommended by manufacturer, were prepared. 24 electroformed disks were divided 3 groups according to surface treatment, i.e. 50 microns aluminium oxide sandblasting(GES-Sand), gold bonder treatment(GES-Bond) and $Rocatec^{TM}$ system(GES-Rocatec). For control group of conventional alloy 50 microns aluminium oxide treatment was done(V-Supragold). Energy dispersive x-ray analysis and scanning electron microscope image were observed. Using universal testing machine, shear bond strength and bonding failure mode at metal-porcelain interface were measured. Results and Conclusion: The following conclusions were drawn: 1. In the energy dispersive x-ray analysis, the Au was main component in electroformed gold(99.9wt%). After surface treatment, a little amount of $Al_2O_3(2.4wt%)$ were found in GES-Sand, and $SiO_2(4wt%)$ in GES-Bond. In GES-Rocatec, however, a large amount of $SiO_2(17.4wt%)$ were found. 2. In the scanning electron microscopy, similar pattern of surface irregu larities were observed in V-Supragold and GES-Sand. In GES-Bond, surface irregularities were increased and globular ceramic particles were observed. In GES-Rocatec, a large amount of silica particles attached to metal surface with increased surface irregularities were observed. 3. The mean shear bond strength values(MPa) in order were $22.9{\pm}3.7(V-Supragold),\;22.1{\pm}3.8(GES-Bond),\;20.1{\pm}2.8(GES-Rocatec)\;and\;13.0{\pm}1.4(GES-Sand)$. There was no significant difference between V-Supragold, GES-Bond, and GES-Rocatec. (P>0.05) 4. Most bonding failures modes were adhesive type in GES-Sand. However, in V-Supragold, GES-Bond and GES-Rocatec, cohesive and combination failures were commonly observed. From the result, with proper surface treatment method electroformed gold may have enough strength compare to conventional ceramometal alloy.

Nano-scale Information Materials Using Organic/Inorganic Templates (유기/무기 나노 템플레이트를 이용한 나노 정보소재 합성 연구)

  • Lee, Jeon-Kook;Jeung, Won-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.149-161
    • /
    • 2004
  • The fusion of nano technology and information technology is essential to sustain the present growth rate and to induce new industry in this ever-growing information age. Considering Korean industry whose competitiveness lies heavily on information related technologies, this field will be inevitable for future. Nano materials can be described as novel materials whose size of elemental structure has been engineered at the nanometer scale. Materials in the nanometer size range exhibit fundamentally new behavior, as their size falls below the critical length scale associated with any given property. " Bottom-up' techniques involve manipulating individual atoms and molecules. Bottom-up process usually implies controlled or directed self assembly of atoms and molecules into nano structures. It resembles more closely the processes of biology and chemistry, where atoms and molecules come together to create structures such as crystals or living cells. Nano scale sensors are included in the electronics area since the diverse sensing mechanisms are often housed on a semiconductor substrate and usually give rise to an electronic signal. The application of nano technology to the chemical sensors should allow improvements in functionality such as gas sensing. In this presentation, we will discuss about the nano scale information materials and devices fabricated by using the organic/inorganic nano templates.

SPECTROPHOTOMETRIC ANALYSIS OF THE INFLUENCE OF METAL SUBSTRATE ON THE COLOR OF CERAMIC (금속하부구조물이 도재의 색조에 미치는 영향에 대한 분광측색분석)

  • Lee Su-Ok;Woo Yi-Hyung;Choi Dae-Gyun;Kwon Keung-Rok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.148-159
    • /
    • 2003
  • Statement of problem Metal-ceramic restorations have been used extensively by dental clinicians for nearly 40 years. Strength an functional ability of metal-ceramic restorations are proved to be satisfying, However esthetics and biocompatibility of metal alloy which is used in metal-ceramic restoration is not ideal. Using pure gold as an alternative, have advantage of esthetics, biocompatibility over conventional metal alloy. But there had been little article which studied on the color effect of pure gold on fual porcelain color. Purpose The purpose of this study was to spectrophotometrically evaluate the difference between color of metal alloy(Au-Pt, Ni-Cr) and pure gold, during color masking procedure with opaque porcelain and to analyze the differences, Material and Methods Three types of metal - base metal(Ni-Cr), high gold alloy(Au-Pt), pure gold(GES) - specimen were fabricated 1cm in diameter. Four steps were established - after finishing, after pre-coditioning, after application of first opaque porcelain(0.08mm in thickness), after application of second opaque porcelain(0.15mm in thickness)- and tested color with spectrophotometer every each steps and analyzed with $CIEL^*a^*b^*$ color order system. One-Way ANOVA test was used to and out if there were significant differences between groups tested and Shaffe multiple comparison was used to identify where the differences were. Results 1. After finishing and pre-conditioning, pure gold(GES) group showed most high values in $L^*,a^*,b^*$. 2. After application of first opaque porcelain(0.08mm in thickness), after application of second opaque porcelain(0.15mm in thickness), pure gold(GES) group showed the least difference in $L^*,a^*,b^*$ values and the lowest ${\Delta}E$ value(${\Delta}E$=0.63). 3. After application of first opaque porcelain and after application of second opaque porcelain differences that were significant (P<0.05) between groups were found only in $a^*$ values. 4. Base metal alloy group showed the lowest $a^*$ value in test after application of first opaque porcelain and the highest value in test after application of first opaque porcelain Conclusion Pure gold group and high gold group showed higher $a^*$ values than base metal group when tested after 0.08mm thickness of opaque porcelain was applied and pure gold group showed much similar $L^*,a^*,b^*$ values between 0.08mm thickness and 0.15mm thickness of opaque porcelain. This meant that pure gold was more easily masked by opaque porcelain than the other two groups.