• Title/Summary/Keyword: Electroencephalogram data

Search Result 128, Processing Time 0.027 seconds

A Comparative Study of the Differences among PC9, TE3, PC5 and TE1 and Their Effects on the EEG (심포경(心包經)과 삼초경(三焦經)의 목혈(木穴)과 금혈(金穴)자침이 뇌파에 미치는 영향 비교연구)

  • Choi, Woo-Jin;Lee, Seung-Gi;Park, Kyung-Mo
    • Korean Journal of Acupuncture
    • /
    • v.26 no.2
    • /
    • pp.15-25
    • /
    • 2009
  • Objective: This paper aimed to understand influences on EEG conducting acupuncture stimulation, by comparing the changes in the acupoints on the body before and after normal people are treated with acupuncture at PC9 and TE3, which are referred to as Wood points(木穴), and PC5 and TE1, which are referred to as the Metal points(金穴) among the five shu points of Yin pericardium Meridian and Yang Triple Energizer Meridian. Methods: The study was performed on 30 healthy female volunteers in their 20's. EEG was measured for 5 minutes before acupuncture stimulation was conducted on PC9, TE3, PC5 and TE1. During 20 minutes of acupuncture treatment, the same items were continuously measured to find out whether there were any changes in them, and they were measured for 5 minutes after removing the acupuncture needles in order to implement a comparative analysis. Results: Comparision of EEG data before and after the treatment at PC9 shows no significant differences in all wave. Compared with the pre-acupuncture period at TE3, $\delta-\theta$ wave decreased significantly (P<0.05) during the acupuncture stimulation periods. Compared with the pre-acupuncture period at PC5, $\delta-\theta$ wave and high $\alpha$ wave increased significantly (P<0.05) during the acupuncture stimulation periods. And Mid $\beta$ wave and high $\beta$ wave decreased significantly (P<0.05) during the acupuncture periods and the post acupuncture periods. Compared with the Pre-acupuncture period at TE1, $\delta-\theta$ wave, $\theta$ wave and high $\alpha$ wave increased significantly (P<0.05) during the acupuncture stimulation periods. And Low $\beta$ wave decreased significantly (P<0.05) during the acupuncture periods. Conclusion: When acupuncture stimulation was performed on PC9 and TE3, referred to as the "Wood points", brain waves were stabled, while when acupuncture was performed on PC5 and TE1, called the "Metal points", a brain was waked. From the findings of this study, we hypothesize that the wood properties, from which growing starts in all things, are related with fast waves of EEG, and the metal properties, which stabilize and converge in all things, are related with slow waves of EEG.

  • PDF

Polysomnography Analysis of Electroencephalography in Patients Expending Benzodiazepine Drugs (Benzodiazepine 계열 약물 복용 환자의 수면다원검사에서 도출된 EEG유형 분석)

  • Jang, Da Jun;Lim, Dong Kyu;Kim, Jae Kyung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.4
    • /
    • pp.333-341
    • /
    • 2021
  • Benzodiazepines (BDZs) drugs act on the GABAA receptor, function as nerve suppressors, and are used to treat anxiety, insomnia, and panic disorder. We analyzed the data of 30 individuals to determine any differences in the sleep-electroencephalogram findings among individuals varying in age, benzodiazepine use, and duration of benzodiazepine use. Comparisons between users and non-users of benzodiazepines, short-term and long-term users, older and younger users, and older short-term and older long-term users, were achieved using electroencephalographic findings obtained through polysomnography. The parameters evaluated included sleep latency, sleep efficiency, sleep-stage percentages, number of sleep spindles, and average frequency of sleep-spindle. The difference between benzodiazepine users and non-users was significant with respect to sleep-stage percentages and average frequency of sleep-spindle. Older and younger users differed significantly with respect to sleep efficiency and sleep-stage percentages, whereas significant difference for sleep efficiency was obtained between long-term and short-term users. Taken together, our results indicate that BDZ consumption suppresses slow-wave sleep and increases the frequency of sleep spindles.

Comparison of Brain Connectivity in Mental Practice and Physical Performance of Bilateral Upper Extremity Function in a Healthy Adult: A Case Study (건강한 성인의 양측상지기능의 상상훈련과 신체적 수행의 대뇌 연결성 비교: 사례 연구)

  • Jeong, Eun-Hwa;Kim, Hee
    • Therapeutic Science for Rehabilitation
    • /
    • v.8 no.1
    • /
    • pp.41-50
    • /
    • 2019
  • Objective: The purpose of this study was to investigate whether there is a difference in the brain connectivity in mental practice and physical performance of training bilateral upper extremity function. Method: The subject performed activities involving mental tasks and physical exercise for bilateral upper extremity functioning during each phase of EEG measurements. The subject performed a symmetrical task(lifting a box and placing it back) that involved moving both arms at the same time and an asymmetrical task(opening and closing a bottle cap) in order to perform functional tasks. EEG electrodes were attached to Fp1, Fp2, F3, F4, T3, T4, P3, and P4. Data analysis was performed using Cross-Line Mapping for correlational analyses between EEG electrode pairs. Conclusion: This study found that the brain connectivity patterns of symmetrical and asymmetric upper extremity tasks have similar patterns for the motor and sensory area, and that the correlation of the physical practice is generally higher than that of the mental practice.

The Changes of Cerebral Metabolic and Hemodynamic Parameters, Brain Histology, and Serum Levels of Neuron-Specific Enolase During Retrograde Cerebral Perfusion Under Pofound Hypothermic total Circulatory Arrest in Pigs (돼지에서 초저체온 순환정지 하의 역행성 뇌관류시 뇌대사, 혈류역학 지표, 뇌조직 소견 및 혈청 내 neuron-specific enolase의 변화)

  • Kim, Kyung-Hwan;Ahn, Hyuk
    • Journal of Chest Surgery
    • /
    • v.33 no.6
    • /
    • pp.445-468
    • /
    • 2000
  • Background: Retrograde cerebral perfusion(RCP) is currently used for brain protection during aorta surgery, however, for the safety of it, various data published so far are insufficient. We performed RCP using pig and investiaged various parameters of cerebral metabolism and brain injury after RCP under deep hypothermia. Material and Method: We used two experimental groups: in group I(7 pigs, 20 kg), we performed RCP for 120 minutes and in group II (5 pigs, 20 kg), we did it for 90 minutes. Nasopharyngeal temperature, jugular venous oxygen saturation, electroencephalogram were continuously monitored, and we checked the parameters of cerebral metabolism, histological changes and serum levels of neuron-specific enolose(NSE) and lactic dehydrogenase(LDH). Central venous pressure during RCP was mainained in the range of 25 to 30 mmHg. Result: Perfusion flow rates(ml/min) during RCP were 130$\pm$57.7(30 minutes), 108.6$\pm$55.2(60 minutes), 107.1$\pm$58.8(90 minutes), 98.6$\pm$58.7(120 minutes) in group I and 72$\pm$11.0(30 minutes), 72$\pm$11.0(60 minutes), 74$\pm$11.4(90 minutes) in group II. The ratios of drain flow to perfusion flow were 0.18(30 minutes), 0.19(60 minutes), 0.17(90 minutes), 0.16(120 minutes) in group I and 0.21, 0.20, 0.17 in group II. Oxygen consumptions(ml/min) during RCP were 1.80$\pm$1.37(30 minutes), 1.72$\pm$1.23(60 minutes), 1.38$\pm$0.82(90 minutes), 1.18$\pm$0.67(120 minutes) in group I and 1.56$\pm$0.28(30 minutes), 1.25$\pm$0.28(60 minutes), 1.13$\pm$0.26(90 minutes). We could observe an decreasing tendency of oxygen consumption after 90 minutes of RCP in group I. Cerebrovascular resistance(dynes.sec.cm-5) during RCP in group I incrased from 71370.9$\pm$369145.5 to 83920.9$\pm$49949.0 after the time frame of 90 minutes(p<0.05). Lactate(mg/min) appeared after 30 minutes of RCP and the levels were 0.15$\pm$0.07(30 minutes), 0.18$\pm$0.10(60 minutes), 0.19$\pm$0.19(90 minutes), 0.18$\pm$0.10(120 minutes) in group I and 0.13$\pm$0.09(30 minutes), 0.19$\pm$0.03(60 minutes), 0.29$\pm$0.11(90 minutes) in group II. Glucose utilization, exudation of carbon dioxide, differences of cerebral tissue acidosis between perfusion blood and drain blood were maintained constantly during RCP. Oxygen saturation levels(%) in drain blood during RCP were 22.9$\pm$4.4(30 minutes), 19.2$\pm$4.5(60 minutes), 17.7$\pm$2.8(90 minutes), 14.9$\pm$2.8(120 minutes) in group I and 21.3$\pm$8.6(30 minutes), 20.8$\pm$17.6(60 minutes), 21.1$\pm$12.1(90 minutes) in group II. There were no significant changes in cerebral metabolic parameters between two groups. Differences in serum levels of NSE and LDH between perfusion blood and drain blood during RCP showed no statistical significance. Serum levels of NSE and LDH after resuming of cardipulmonary bypass decreased to the level before RCP. Brain water contents were 0.73$\pm$0.03 in group I and 0.69$\pm$0.06 in group II and were higher than those of the controls(p<0.05). The light microscopic findings of cerebral neocortex, basal ganglia, hippocampus(CA1 region) and cerebellum showed no evidence of cerebral injury in two groups and there were no different electron microscopy in both groups(neocortex, basal ganglia and hippocampus), but they were thought to be reversible findings. Conclusion: Although we did not proceed this study after survival of pigs, we could perform the RCP successfully for 120 minutes with minimal cerebral metabolism and no evidence of irreversible brain damage. The results of NSE and LDH during and after RCP should be reevaluated with survival data.

  • PDF

Study on the Characteristics of EEG in Resting State on Visuo-Spatial Working Memory Performance (시공간 작업기억 수행능력에 따른 안정상태에서의 뇌파 특성 연구)

  • Jung, Chul-Woo;Lee, Hyeob-Eui;Wi, Hyun-Wook;Choi, Nam-Sook;Park, Pyong-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.351-360
    • /
    • 2016
  • The purpose of this study is to predict visual-spatial working memory performance through the characteristics of an electroencephalogram (EEG) in the resting state. The 31 study participants, middle school students with various to academic performance, were underwent visual-spatial working memory test in the Comprehensive Attention Test (CAT) on December in 2014. Each 7 and 6 participants were divided into an Excellent Working Memory (EWM) group and Poor Working Memory (PWM) group depending on the forward/backward working memory scores. The EEG measurements and analysis of the data from a Brain Function Tester were performed by the two groups. A Mann-Whitney Test was used to examine the statistical differences between them. The activation of high beta (${\beta}H$) at the Fp1 and Fp2 sites in the left and right hemisphere, and that of the low beta (${\beta}L$) in the right hemisphere in the EWM group was significantly higher than that in the PWM group. In conclusion, there is a correlation between the visual-spatial working memory performance and the activation of ${\beta}H$ and ${\beta}L$ in the resting state and a close correlation that of ${\beta}L$ in the right hemisphere in terms of mental activity and faculty. Therefore, the visual-spatial working memory performance can be predicted by the activation of ${\beta}H$ and ${\beta}L$ in the resting state. The activation of EEG can be applied as an assessment tool and provide basis data for visual-spatial working memory performance.

Changes of the Prefrontal EEG(Electroencephalogram) Activities according to the Repetition of Audio-Visual Learning (시청각 학습의 반복 수행에 따른 전두부의 뇌파 활성도 변화)

  • Kim, Yong-Jin;Chang, Nam-Kee
    • Journal of The Korean Association For Science Education
    • /
    • v.21 no.3
    • /
    • pp.516-528
    • /
    • 2001
  • In the educational study, the measure of EEG(brain waves) can be useful method to study the functioning state of brain during learning behaviour. This study investigated the changes of neuronal response according to four times repetition of audio-visual learning. EEG data at the prefrontal$(Fp_{1},Fp_{2})$ were obtained from twenty subjects at the 8th grade, and analysed quantitatively using FFT(fast Fourier transform) program. The results were as follows: 1) In the first audio-visual learning, the activities of $\beta_{2}(20-30Hz)$ and $\beta_{1}(14-19Hz)$ waves increased highly, but the activities of $\theta(4-7Hz)$ and $\alpha$ (8-13Hz) waves decreased compared with the base lines. 2). According to the repetitive audio-visual learning, the activities of $\beta_{2}$ and $\beta_{1}$ waves decreased gradually after the 1st repetitive learning. And, the activity of $\beta_{2}$ wave had the higher change than that of $\beta_{1}$ wave. 3). The activity of $\alpha$ wave decreased smoothly according to the repetitive audio-visual learning, and the activity of $\theta$ wave decreased radically after twice repetitive learning. 4). $\beta$ and $\theta$ waves together showed high activities in the 2nd audio-visual learning(once repetition), and the learning achievement increased highly after the 2nd learning. 5). The right prefrontal$(Fp_{2})$ showed higher activation than the left$(Fp_{1})$ in the first audio-visual learning. However, there were not significant differences between the right and the left prefrontal EEG activities in the repetitive audio-visual learning. Based on these findings, we can conclude that the habituation of neuronal response shows up in the repetitive audio-visual learning and brain hemisphericity can be changed by learning experiences. In addition, it is suggested once repetition of audio-visual learning be effective on the improvement of the learning achievement and on the activation of the brain function.

  • PDF

A Preliminary Study for Nonlinear Dynamic Analysis of EEG in Patients with Dementia of Alzheimer's Type Using Lyapunov Exponent (리아프노프 지수를 이용한 알쯔하이머형 치매 환자 뇌파의 비선형 역동 분석을 위한 예비연구)

  • Chae, Jeong-Ho;Kim, Dai-Jin;Choi, Sung-Bin;Bahk, Won-Myong;Lee, Chung Tai;Kim, Kwang-Soo;Jeong, Jaeseung;Kim, Soo-Yong
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 1998
  • The changes of electroencephalogram(EEG) in patients with dementia of Alzheimer's type are most commonly studied by analyzing power or magnitude in traditionally defined frequency bands. However because of the absence of an identified metric which quantifies the complex amount of information, there are many limitations in using such a linear method. According to the chaos theory, irregular signals of EEG can be also resulted from low dimensional deterministic chaos. Chaotic nonlinear dynamics in the EEG can be studied by calculating the largest Lyapunov exponent($L_1$). The authors have analyzed EEG epochs from three patients with dementia of Alzheimer's type and three matched control subjects. The largest $L_1$ is calculated from EEG epochs consisting of 16,384 data points per channel in 15 channels. The results showed that patients with dementia of Alzheimer's type had significantly lower $L_1$ than non-demented controls on 8 channels. Topographic analysis showed that the $L_1$ were significantly lower in patients with Alzheimer's disease on all the frontal, temporal, central, and occipital head regions. These results show that brains of patients with dementia of Alzheimer's type have a decreased chaotic quality of electrophysiological behavior. We conclude that the nonlinear analysis such as calculating the $L_1$ can be a promising tool for detecting relative changes in the complexity of brain dynamics.

  • PDF

The impact of functional brain change by transcranial direct current stimulation effects concerning circadian rhythm and chronotype (일주기 리듬과 일주기 유형이 경두개 직류전기자극에 의한 뇌기능 변화에 미치는 영향 탐색)

  • Jung, Dawoon;Yoo, Soomin;Lee, Hyunsoo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.1
    • /
    • pp.51-75
    • /
    • 2022
  • Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation that is able to alter neuronal activity in particular brain regions. Many studies have researched how tDCS modulates neuronal activity and reorganizes neural networks. However it is difficult to conclude the effect of brain stimulation because the studies are heterogeneous with respect to the stimulation parameter as well as individual difference. It is not fully in agreement with the effects of brain stimulation. In particular few studies have researched the reason of variability of brain stimulation in response to time so far. The study investigated individual variability of brain stimulation based on circadian rhythm and chronotype. Participants were divided into two groups which are morning type and evening type. The experiment was conducted by Zoom meeting which is video meeting programs. Participants were sent experiment tool which are Muse(EEG device), tdcs device, cell phone and cell phone holder after manuals for experimental equipment were explained. Participants were required to make a phone in frount of a camera so that experimenter can monitor online EEG data. Two participants who was difficult to use experimental devices experimented in a laboratory setting where experimenter set up devices. For all participants the accuracy of 98% was achieved by SVM using leave one out cross validation in classification in the the effects of morning stimulation and the evening stimulation. For morning type, the accuracy of 92% and 96% was achieved in classification in the morning stimulation and the evening stimulation. For evening type, it was 94% accuracy in classification for the effect of brain stimulation in the morning and the evening. Feature importance was different both in classification in the morning stimulation and the evening stimulation for morning type and evening type. Results indicated that the effect of brain stimulation can be explained with brain state and trait. Our study results noted that the tDCS protocol for target state is manipulated by individual differences as well as target state.