• 제목/요약/키워드: Electrodics

검색결과 2건 처리시간 0.019초

Simultaneous uptake of arsenic and lead using Chinese brake ferns (Pteris vittata) with EDTA and electrodics

  • Butcher, David J.;Lim, Jae-Min
    • 분석과학
    • /
    • 제32권1호
    • /
    • pp.1-6
    • /
    • 2019
  • Chinese brake fern (Pteris vittata) has potential for application in the phytoremediation of arsenic introduced by lead arsenate-based pesticides. In this study, Chinese brake ferns were used to extract arsenic, mainly in field and greenhouse experiments, and to assess the performance of simultaneous phytoaccumulation of arsenic and lead from homogenized soil in the greenhouse, with the application of EDTA and electric potential. The ferns have been shown to be effective in accumulating high concentrations of arsenic, and extracting both arsenic and lead from the contaminated soil, with the addition of a chelating agent, EDTA. The maximum increase in lead accumulation in the ferns was 9.2 fold, with a 10 mmol/kg addition of EDTA. In addition, the application of EDTA in combination with electric potential increased the lead accumulation in ferns by 10.6 fold at 5 mmol/kg of EDTA and 40 V (dc), compared to controls. Therefore, under application of EDTA and electric potential, Chinese brake fern is able to extract arsenic and lead simultaneously from soil contaminated by lead arsenate.

A Comparison of Electrical Stimulation for Electrodic and EDTA-Enhanced Phytoremediation of Lead using Indian Mustard (Brassica juncea)

  • Lim, Jae-Min;Jin, Biao;Butcher, David J.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2737-2740
    • /
    • 2012
  • The use of plants to remove toxic metals from soil (phytoremediation) is emerging as a cost-effective alternative to conventional methods for the removal of heavy metals from contaminated soil. Indian mustard (Brassica juncea) was used as the plant to accumulate high tissue concentrations of lead when grown in contaminated soil. For this study, the application of an electric field combined effectively with EDTA-enhanced phytoremediation. A stimulation of direct and alternating electric potential was compared and EDTA-enhanced phytoremediation of lead using Indian mustard has been performed. The effects of experimental parameters such as operating voltage with different concentration of EDTA, the number of graphite electrodes, and cultivation period on the removal of toxic metal were studied. Shoot lead accumulations in Indian mustard increased as the concentration of EDTA and dc electric potential was increased. Two to four folds was increased when EDTA plus a dc electric potential was applied, compared to an ac electric potential. The maximum lead accumulation in the shoots was achieved by applying EDTA plus dc electric potential with 6 graphite electrodes.