• 제목/요약/키워드: Electrode-Plate

Search Result 398, Processing Time 0.02 seconds

Effect of a Cylindrical Third Electrode of a Point-Plate Type Plasma Reactor on Corona Discharge and Ozone Generation Characteristics (침대 평판형 플라즈마장치의 코로나 방전 및 오존발생 특성에 미치는 원통형 3전극의 영향)

  • Moon, Jae-Duk;Jung, Ho-Jun;Jung, Jae-Seung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.933-937
    • /
    • 2007
  • A point plate type nonthermal plasma reactor, with a grounded cylindrical third electrode which closely- encompasses the needle point, have been investigated with an emphasis on the role of the third electrode. It was found that the point plate airgap, with the grounded third electrode, had a switching characteristic on its I V characteristics for negative and positive discharges, which is very different from that of a conventional point plate airgap without a third electrode. The corona discharge and ozone generation characteristics of the plasma reactor with the grounded cylindrical third electrode, such as the corona onset voltage. the breakdown voltage. the corona current. and the amount of output ozone, were influenced significantly by the height of the third electrode. and these characteristics can be controlled by adjusting the height of the third electrode.

Effect of the Biased Third Electrode of a Wire-Plate Type Plasma Reactor on Corona Discharge and Ozone Generation Characteristics (선대 평판형 플라즈마장치의 코로나 방전 및 오존발생 특성에 미치는 바이어스된 3전극의 영향)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.648-652
    • /
    • 2008
  • Corona discharge and ozone generation characteristics of a wire-plate plasma reactor, with a biased third electrode, have been investigated with an emphasis on the role of the bias voltage and frequency applied on the third electrode. It was found that the wire-plate plasma reactor, with the biased third electrode, had a switching characteristic on its I-V characteristics for negative and positive discharges, which is very different from that of a conventional wire-plate plasma reactor without the third electrode. As a result, the corona discharge and ozone generation characteristics of the proposed plasma reactor could be controlled by adjusting the bias voltage and frequency of the third electrode. The corona onset and breakdown voltages, and ozone generation and yield, were increased compared with those of without the third electrode. These, however, reveal the effectiveness of the biased third electrode.

Advanced Lake Water Treatment with Bipolar Packed Bed Electrode Cell(II) (3차원 전극(Bipolar Packed Bed Electrode)을 이용한 호소수 처리(II))

  • 장철현;박상우;최창수
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.355-360
    • /
    • 2002
  • This study was to analyze the right of wrong of gray-water treatment by applying BPBE electrode cell to the effluence water in the terminal disposal plant of sewage. The results were as follows : The best result was obtained with applied voltage 40V and detention time 6 minutes for the BPBE electrode cell which has the graphite-plate in main electro-de, packing coconut activated carbon. The elimination rate of COD of Al-plate was higher than that of graphite-plate in main electrode. The result of electrolysis for 3 hour in parallel circuit showed the using possibility of gray-water according to each elimination rate : COD 59%, T-N 69 %, T-P 69%. The BPBE electrode cell with the Al-plate in main electrode made the best effect for the elimination of algae in lake water and algae were not occurred in electrolytic water.

Electric Characteristics of the MFC according to different electrode structures and materials (미생물 연료전지의 전극 재료와 구조에 따른 전기적 특성)

  • Choi, Kyu-man
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.1
    • /
    • pp.36-39
    • /
    • 2014
  • MFC(microbial fuel cell) is the device to produce the electricity by using the microbes which are living in the waste water. In this paper, the electric characteristics of the MFC were investigated according to each different structure and electrode materials. The voltage being reversed phenomenon was observed in the MFC which uses the cupper plate as the cathode material. This result comes from the oxidation reaction of the cupper plate electrode in this MFC. And this MFC has lower output voltage than one that has a platinum plate electrode. The smaller gap distance of the cupper plate electrode of the MFC showed the higher output voltage. The larger electrode area of the cupper plate electrode showed that the reaching time of the output voltage to the maximum value was delayed.

I-V characteristics of ground electrode fabricated using an aluminium scrap (알루미늄 스크랩을 이용하여 제작한 접지 전극의 전압-전류 특성)

  • 이우선;정용호;박진성
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.806-812
    • /
    • 1996
  • I-V characteristics of ground electrode fabricated using an aluminium scrap are presented. We fabricated several shapes of aluminium scraps and aluminium electrodes. The results show that the current of aluminium electrode increased linearly by the voltage increase. AC breakdown voltage of copper plate electrode was higher than that of aluminium electrode. AC breakdown current of aluminium electrode was higher than that of copper plate electrode. As applied voltage increased, grounding resistance of aluminum electrode decreased linearly.

  • PDF

Flow Characteristics Analyses within the Electrolysis Reactor using the CFD Simulation Technique (CFD 모사 기법을 이용한 전해반응기 내부 흐름 특성 분석)

  • Jeong, Jongsik;Lee, Seungjae;Lee, Jaebok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.745-753
    • /
    • 2016
  • The objective of this study was to investigate design factors of the electrolysis reactor through the CFD(computational fluid dynamics) simulation technique. Analyses of velocity vector, streamline, chloride ion concentration distribution showed differences in flow characteristics between the plate type electrode and the porous plate type electrode. In case of the porous plate type electrode, chlorine gas bubbles generated from the anode made upward density flow with relatively constant velocity vectors. Electrolysis effect was more expected with the porous plate type electrode from the distribution of chloride ion concentration. The upper part of the electrolysis reactor with the porous plate type electrode had comparatively low chloride concentration because chloride was converted to the chlorine gas formation. Decreasing the size and increasing total area of rectifying holes in the upper part of cathodes, and widening the area of the rectifying holes in the lower part of cathodes could improve the circulation flow and the efficiency of electrolysis reactor.

Resistance Spot Welding Characteristics of Mg Alloy Using Process Tape (Process Tape를 사용한 마그네슘 합금의 저항 점 용접 특성)

  • Choi, Dong-Soon;Kim, Dong-Cheol;Kang, Moon-Jin
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.49-53
    • /
    • 2013
  • Recently, studies about application of magnesium alloy sheet to automotive bodies are on the increase. For application to automotive bodies, researches about characteristics of resistance spot welding of magnesium alloy sheet are essential. Electrode life of resistance spot welding of magnesium alloy is very short due to sticking of magnesium alloy to copper alloy electrode. To increase electrode life, most effective method is inserting cover plate between electrode and magnesium sheet. But application of cover plate to actual process is difficult and decreases welding productivity. Process tape supplied automatically as cover plate can minimize lose of productivity and increase welding quality. In this study, resistance spot welding of magnesium alloy is carried out with applying process tape. Acceptable welding current region according to electrode force and welding time is determined.

Treatment of Wastewater containing Cu and Ni by Electrolysis (전기분해를 이용한 동과 니켈함유 폐수처리)

  • 김재용;이상희
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.47-55
    • /
    • 2001
  • We investigated to find the optimum operation condition of electrolysis which have an influence on removal efficiency of heavy metals. When we experimented the testing wastewaters containing each 250mg/L of Cu and Ni ions, we got the variables like as pH, amount of electrolyte(NaCl), different species of electrode, electrode gap, electric strength, the number of electrodes, after fastening positive electrode plate with Al, Fe, Ti and negative electrode plate with Stainless Steel plate.

  • PDF

Development of an Integrated Electrode-bipolar Plate Assembly with Reduced Contact Resistance for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 접촉저항 감소 일체형 전극-분리판 조립체 개발)

  • Amanpreet Kaur;Jun Woo Lim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.190-196
    • /
    • 2024
  • The bipolar plate is a crucial element of the vanadium redox flow battery (VRFB) as it serves as both the electrical conduit and the structural support for the cell within the VRFB stack. Although, the graphite material is primarily used for the bipolar plate due to its excellent electrical conductivity, a significant limitation of performance of the VRFB is present due to high interfacial contact resistance (ICR) arises between the electrode and bipolar plate in the cell stack. This study aims to develop an integrated electrode-bipolar plate assembly that will address the limitations of the ICR. The integrated assembly was constructed using a single carbon felt with thermoplastic and thermoset polymers utilizing hot press method. Experimental results verify that the bipolar plate assembly exhibits reduced area specific resistance (ASR) due to the continuous electrical path. Additionally, from the charge/discharge cell test results, the integrated assembly shows improved cell performance. Therefore, the developed integrated electrode-bipolar plate assembly can serve as a substitute for the conventional bipolar plate and electrode assembly.

Optimal Distance between Positive and Negative Electrode-Plates Coated with Activated Carbon in Dust Removal Chamber (활성탄전극을 이용한 분진제거에서 전극의 적정 간격에 관한 연구)

  • Kim, Kwang Soo;Park, Hyun Chul;Jun, Tae Hwan;Lee, Ju Haeng;Nam, Sang Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.11
    • /
    • pp.821-826
    • /
    • 2013
  • The purposes of this research are to study on optimal distance between positive and negative electrodes in dust removal chamber. The experiments were performed with electrode-plate gab arranging in order of 3 cm, 2 cm, 1 cm in series while varying influent flow-rate. From the experimental results of dust removal the optimal influent linear velocity was 6 cm/sec and the total mass of attached dust on the surface of electrode-plate was increased as electrode-plate gab is closer. But in case of electrode-plate gab being very close about 1 cm or so, the attached dust on the surface of electrode-plate was shown releasing from electrode-plate due to dust electric-charge changing (reverse ionization). Evantually. optimal distance between positive and negative electrode-plates was about 2 cm and also optimal dust loading rate was about $24mg/min{\cdot}m^2$.