• 제목/요약/키워드: Electrode treatment

검색결과 697건 처리시간 0.03초

Spray coating of electrochemically exfoliated graphene/conducting polymer hybrid electrode for organic field effect transistor

  • Kim, Youn;Kwon, Yeon Ju;Hong, Jin-Yong;Park, Minwoo;Lee, Cheol Jin;Lee, Jea Uk
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.399-405
    • /
    • 2018
  • We report the fabrication of organic field-effect transistors (OFETs) via spray coating of electrochemically exfoliated graphene (EEG) and conducting polymer hybrid as electrodes. To reduce the roughness and sheet resistance of the EEG electrodes, subsequent coating of conducting polymer (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)) and acid treatment was performed. After that, active channel layer was developed by spin coating of semiconducting poly(3-hexylthiophene) on the hybrid electrodes to define the bottom gate bottom contact configuration. The OFET devices with the EEG/PEDOT:PSS hybrid electrodes showed a reasonable electrical performances (field effect mobility = $0.15cm^2V^{-1}\;s^{-1}$, on/off current ratio = $10^2$, and threshold voltage = -1.57V). Furthermore, the flexible OFET devices based on the Polydimethlsiloxane (PDMS) substrate and ion gel dielectric layer exhibited higher electrical performances (field effect mobility = $6.32cm^2V^{-1}\;s^{-1}$, on/off current ratio = $10^3$, and threshold voltage = -1.06V) and excellent electrical stability until 1000 cycles of bending test, which means that the hybrid electrode is applicable to various organic electronic devices, such as flexible OFETs, supercapacitors, organic sensors, and actuators.

Imprinted Graphene-Starch Nanocomposite Matrix-Anchored EQCM Platform for Highly Selective Sensing of Epinephrine

  • Srivastava, Juhi;Kushwaha, Archana;Singh, Meenakshi
    • Nano
    • /
    • 제13권11호
    • /
    • pp.1850131.1-1850131.19
    • /
    • 2018
  • In this paper, an electrochemical sensor for epinephrine (EP), a neurotransmitter was developed by anchoring molecularly imprinted polymeric matrix (MIP) on the surface of gold-coated quartz crystal electrode of electrochemical quartz crystal microbalance (EQCM) using starch nanoparticles (Starch NP) - reduced graphene oxide (RGO) nanocomposite as polymeric format for the first time. Use of EP in therapeutic treatment requires proper dose and route of administration. Proper follow-up of neurological disorders and timely diagnosis of them has been found to depend on EP level. The MIP sensor was developed by electrodeposition of starch NP-RGO composite on EQCM electrode in presence of template EP. As the imprinted sites are located on the surface, high specific surface area enables good accessibility and high binding affinity to template molecule. Differential pulse voltammetry (DPV) and piezoelectrogravimmetry were used for monitoring binding/release, rebinding of template to imprinted cavities. MIP-coated EQCM electrode were characterized by contact angle measurements, AFM images, piezoelectric responses including viscoelasticity of imprinted films, and other voltammetric measurements including direct (DPV) and indirect (using a redox probe) measurements. Selectivity was assessed by imprinting factor (IF) as high as 3.26 (DPV) and 3.88 (EQCM). Sensor was rigorously checked for selectivity in presence of other structurally close analogues, real matrix (blood plasma), reproducibility, repeatability, etc. Under optimized conditions, the EQCM-MIP sensor showed linear dynamic ranges ($1-10{\mu}M$). The limit of detection 40 ppb (DPV) and 290 ppb (EQCM) was achieved without any cross reactivity and matrix effect indicating high sensitivity and selectivity for EP. Hence, an eco-friendly MIP-sensor with high sensitivity and good selectivity was fabricated which could be applied in "real" matrices in a facile manner.

직렬배열 다중전극 고전압 펄스 전기장 처리장치를 이용한 약주의 살균 (Sterilization of Yakju(Rice Wine) on a Serial Multiple Electrode Pulsed Electric Field Treatment System)

  • 목철균;이상기
    • 한국식품과학회지
    • /
    • 제32권2호
    • /
    • pp.356-362
    • /
    • 2000
  • 7개의 전극을 직렬로 배열한 다중전극 고전압펄스 전기장(PEF) 처리장치를 사용하여 전기장 세기와 주파수를 달리한 square wave 펄스(너비 $1\;{\mu}s$)로 약주의 연속 살균을 시도하였다. 살균 전 약주의 총균수는 $1.88{\times}10^3{\sim}2.13{\times}10^4\;CFU/mL$, 효모는 $1.72{\times}10^3{\sim}2.39{\times}10^4\;CFU/mL$, 젖산균은 $1.55{\times}10^3{\sim}2.85{\times}10^4\;CFU/mL$이었다. 약주를 유량 1 mL/s의 속도로 PEF장치에 투입하여 처리한 결과 미생물 사멸기구는 1차반응으로 해석 될 수 있었고, 주파수 및 전기장세기가 증가함에 따라 살균율이 높아졌다. $D_{Hz}$값 및 $D_{PEF}$값은 전기장 세기가 증가함에 따라 감소하였으며, 효모는 세균에 비하여 낮은 값을 보였다. 젖산균은 30 kV/cm 이하의 전기장에서는 일반 호기성 세균에 비하여 낮은 $D_{PEF}$값을 보였으나, 40 kV/cm 이상에서는 높은 $D_{PEF}$값을 나타냈다. 미생물 종류별 $Z_{PEF}$값은 일반 호기성 세균 39.4 kV/cm 젖산균 49.3 kV/cm, 효모 47.6 kV/cm로 일반 호기성 세균의 전기장세기에 대한 의존성이 가장 큰 것으로 나타났다. PEF처리에 의한 약주의 색택 변화는 열처리에 비하여 미미하였으며, PEF살균 약주의 품질은 가열살균 약주에 비하여 월등히 우수하였다. 약주를 본 연구에서 사용한 PEF장치에 2회 통과시킬 경우 상업적 살균이 달성되었다.

  • PDF

Electrode formation using Light induced electroless plating in the crystalline silicon solar cells

  • 정명상;강민구;이정인;김동환;송희은
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.347.1-347.1
    • /
    • 2016
  • Screen printing is commonly used to form the electrode for crystalline silicon solar cells. However, it has caused high resistance and low aspect ratio, resulting in decrease of conversion efficiency. Accordingly, Ni/Cu/Ag plating method could be applied for crystalline silicon solar cells to reduce contact resistance. For Ni/Cu/Ag plating, laser ablation process is required to remove anti-reflection layers prior to the plating process, but laser ablation results in surface damage and then decrease of open-circuit voltage and cell efficiency. Another issue with plating process is ghost plating. Ghost plating occurred in the non-metallized region, resulting from pin-hole in anti-reflection layer. In this paper, we investigated the effect of Ni/Cu/Ag plating on the electrical properties, compared to screen printing method. In addition, phosphoric acid layer was spin-coated prior to laser ablation to minimize emitter damage by the laser. Phosphorous elements in phosphoric acid generated selective emitter throughout emitter layer during laser process. Then, KOH treatment was applied to remove surface damage by laser. At this step, amorphous silicon formed by laser ablation was recrystallized during firing process and remaining of amorphous silicon was removed by KOH treatment. As a result, electrical properties as Jsc, FF and efficiency were improved, but Voc was lower than screen printed solar cells because Voc was decreased due to surface damage by laser process. Accordingly, we expect that efficiency of solar cells could be improved by optimization of the process to remove surface damage.

  • PDF

하수고도처리용 미세조류의 최적회수를 위한 전기응집기술 적용에 있어 전류의 영향 (Effects of electric current on electrocoagulation for optimal harvesting of microalgae for advanced wastewater treatment)

  • 이석민;주성진;최경진;장산;황선진
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.473-478
    • /
    • 2014
  • Microalgae is known as one alternative energy source of the fossil fuel with the small size of $5{\sim}50{\mu}m$ and negative charge. Currently, the cost of microalgae recovery process take a large part, about 20 - 30% of total operating cost. Thus, the microalgae recovery method with low cost is needed. In this study, the optimum current for Scenedesmus dimorphus recovery process using electrocoagulation techniques was investigated. Under the electrical current, Al metal in anode electrode is oxidized to oxidation state of $Al^{3+}$. In the cathode electrode, the water electrolysis generated $OH^-$ which combine with $Al^{3+}$ to produce $Al(OH)_3$. This hydroxide acts as a coagulant to harvest microalgae. Before applying in 1.5 L capacity electrocoagulation reactor, Scenedesmus dimorphus was cultured in 20 L cylindrical reactor to concentration of 1 OD. The microalgae recovery efficiency of electrocoagulation reactor was evaluated under different current conditions from 0.1 ~ 0.3 A. The results show that, the fastest and highest recovery efficiency were achieved at the current or 0.3 A, which the highest energy efficiency was achieved at 0.15 A.

Factors Associated with the Success of Trial Spinal Cord Stimulation in Patients with Chronic Pain from Failed Back Surgery Syndrome

  • Son, Byung-Chul;Kim, Deok-Ryeong;Lee, Sang-Won;Chough, Chung-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • 제54권6호
    • /
    • pp.501-506
    • /
    • 2013
  • Objective : Spinal cord stimulation (SCS) is an effective means of treatment of chronic neuropathic pain from failed back surgery syndrome (FBSS). Because the success of trial stimulation is an essential part of SCS, we investigated factors associated with success of trial stimulation. Methods : Successful trial stimulation was possible in 26 of 44 patients (63.6%) who underwent insertion of electrodes for the treatment of chronic pain from FBSS. To investigate factors associated with successful trial stimulation, patients were classified into two groups (success and failure in trial). We investigated the following factors : age, sex, predominant pain areas (axial, limb, axial combined with limbs), number of operations, duration of preoperative pain, type of electrode (cylindrical/paddle), predominant type of pain (nociceptive, neuropathic, mixed), degree of sensory loss in painful areas, presence of motor weakness, and preoperative Visual Analogue Scale. Results : There were no significant differences between the two groups in terms of age, degree of pain, number of operations, and duration of pain (p>0.05). Univariate analysis revealed that the type of electrode and presence of severe sensory deficits were significantly associated with the success of trial stimulation (p<0.05). However, the remaining variable, sex, type of pain, main location of pain, degree of pain duration, degree of sensory loss, and presence of motor weakness, were not associated with the trial success of SCS for FBSS. Conclusion : Trial stimulation with paddle leads was more successful. If severe sensory deficits occur in the painful dermatomes in FBSS, trial stimulation were less effective.

전기산화공법을 이용한 고농도폐수 처리공정의 모델링 및 최적화 (Modeling and Optimization of High Strength Wastewater Treatment Using the Electro Oxidation Process)

  • 이홍민;이상선;황성원;진동복
    • Korean Chemical Engineering Research
    • /
    • 제54권3호
    • /
    • pp.340-349
    • /
    • 2016
  • 본 연구에서는 정유산업의 유지 및 보수기간에 배출되는 고농도폐수의 COD (Chemical Oxygen Demand)를 효과적으로 제거하기 위해 전기산화공법을 적용하였다. 우선 산업에서 배출되는 실제 폐수를 처리하기 위하여 BDD전극을 개발하고, 개발된 전극을 이용하여 전류밀도, pH, 전해질농도, 반응시간 등과 같은 다양한 운전조건하에 실험을 진행하였다. 둘째, 이러한 실험결과를 이용하여 전기분해의 kinetic parameter를 산출한 후에, 이를 토대로 전기산화 처리설비를 수학적으로 모델링 하였다. 마지막으로, 기존에 정상운전 조건 시 사용하던 저 농도 폐수를 처리하는 공정의 유입조건에 맞추기 위하여 전기산화 처리설비의 설계 및 운전의 다양한 변수들을 최적화함으로써 보다 효율적인 폐수 전처리 시스템을 개발하였다. 본 연구를 통해 개발된 모델의 결정계수($R^2$)는 0.982로 상당히 작은 오차범위를 보여줌으로써 모델의 높은 정확도를 입증하였다.

전기분해법에서의 전극변화에 따른 위생매립장 침출수의 처리특성 (Characteristics of treatment by Electrolysis with a change of electrodes in sanitary landfill leachate)

  • 허목;김병현;김광진
    • 유기물자원화
    • /
    • 제10권1호
    • /
    • pp.68-74
    • /
    • 2002
  • 본 연구는 매립지로의 재순환에 의해 생물학적으로 전처리된 생활폐기물 위생매립장의 침출수를 대상으로 잔류된 생물학적 난분해성 부식질(humus)과 잔류 색깔(color)의 제거를 위해 전기분해법의 적용가능성을 검토하기 위해서 수행되었다. 연구를 통해 얻어진 결과는 다음과 같다. 1) 매립층을 통과한 침출수의 전기분해에서 CODcr과 Color의 제거율은 70~80%범위였고, Color의 제거에서 전기분해만으로도 배출기준을 충족하고 있음을 나타내었다. 2) pH7~8범위에서 가장 높은 제거율을 나타내었다. 3) 양극(+)으로 Al, Fe, Stainless를 사용했을 때 CODcr과 Color의 제거율은 Fe, Al, Stainless순으로 높았고, 반응물의 침전성 또는 전기적인 응집 후의 제거효율을 고려하면 Fe전극이 가장 높았다. 4) 본 연구에서 CODcr과 Color의 동시 제거를 위한 조건은 양극(+)은 Fe, 전극간격은 2cm 그리고 8volt의 전압에서 40분간이었다.

  • PDF

Physical Vapor Deposition 방법으로 제조된 Al-Ni 전극의 두께가 알칼라인 수전해 수소발생반응에 미치는 영향 연구 (Understanding the Effect on Hydrogen Evolution Reaction in Alkaline Medium of Thickness of Physical Vapor Deposited Al-Ni Electrodes)

  • 한원비;조현석;조원철;김창희
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.610-617
    • /
    • 2017
  • This paper presents a study of the effect of thickness of porous Al-Ni electrodes, on the Hydrogen Evolution Reaction (HER) in alkaline media. As varying deposition time at 300 W DC sputtering power, the thickness of the Al-Ni electrodes was controlled from 1 to $20{\mu}m$. The heat treatment was carried out in $610^{\circ}C$, followed by selective leaching of the Al-rich phase. XRD studies confirmed the presence of $Al_3Ni_2$ intermetallic compounds after the heat treatment, indicating the diffusion of Ni from the Ni-rich phase to Al-rich phase. The porous structure of the Al-Ni electrodes after the selective leaching of Al was also confirmed in SEM-EDS analysis. The double layer capacitance ($C_{dl}$) and roughness factor ($R_f$) of the electrodes were increased for the thicker Al-Ni electrodes. As opposed to the general results in above, there were no further improvements of the HER activity in the case of the electrode thickness above $10{\mu}m$. This result may indicate that the $R_f$ is not the primary factor for the HER activity in alkaline media.

Electrochemical degradation of Orange G in K2SO4 and KCl medium

  • Hamous, Hanene;Khenifi, Aicha;Bouberka, Zohra;Derriche, Zoubir
    • Environmental Engineering Research
    • /
    • 제25권4호
    • /
    • pp.571-578
    • /
    • 2020
  • In this work, a detailed study on the electrochemical degradation of an azo dye, Orange G is performed using a platinum electrode. Indeed, the influence of the dye concentration (50-150 mg/L), the pH of the medium and the density of the electric current is studied on the rate of discoloration, the rate of mineralization, the efficiency of the electric current and the energy consumption. The UV-visible spectra of OG plotted against the degradation time show the decrease of the intensity of the characteristic dye peaks. In an environment rich in chlorides, all peaks disappear after 15 min of degradation. However, the peaks at wavelengths of 200 and 290 nm appeared after one hour of treatment. In K2SO4, the eliminated percentages are respectively 46, 54 and 61% for wavelengths of 245, 330 and 480 nm. This suggests that the degradation mechanisms in K2SO4 and KCl environments are not the same. In the middle rich in chlorides, the eliminated percentage of OG did not seem to be affected by the concentrations increase. These results confirm the hypothesis that electrochemical oxidation process is very favorable for concentrated pollutants discharge.