Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.08.015

Spray coating of electrochemically exfoliated graphene/conducting polymer hybrid electrode for organic field effect transistor  

Kim, Youn (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT))
Kwon, Yeon Ju (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT))
Hong, Jin-Yong (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT))
Park, Minwoo (Department of Chemical and Biological Engineering, Sookmyung Women's University)
Lee, Cheol Jin (School of Electrical Engineering, Korea University)
Lee, Jea Uk (Carbon Industry Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT))
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 399-405 More about this Journal
Abstract
We report the fabrication of organic field-effect transistors (OFETs) via spray coating of electrochemically exfoliated graphene (EEG) and conducting polymer hybrid as electrodes. To reduce the roughness and sheet resistance of the EEG electrodes, subsequent coating of conducting polymer (poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)) and acid treatment was performed. After that, active channel layer was developed by spin coating of semiconducting poly(3-hexylthiophene) on the hybrid electrodes to define the bottom gate bottom contact configuration. The OFET devices with the EEG/PEDOT:PSS hybrid electrodes showed a reasonable electrical performances (field effect mobility = $0.15cm^2V^{-1}\;s^{-1}$, on/off current ratio = $10^2$, and threshold voltage = -1.57V). Furthermore, the flexible OFET devices based on the Polydimethlsiloxane (PDMS) substrate and ion gel dielectric layer exhibited higher electrical performances (field effect mobility = $6.32cm^2V^{-1}\;s^{-1}$, on/off current ratio = $10^3$, and threshold voltage = -1.06V) and excellent electrical stability until 1000 cycles of bending test, which means that the hybrid electrode is applicable to various organic electronic devices, such as flexible OFETs, supercapacitors, organic sensors, and actuators.
Keywords
Electrochemically exfoliated graphene; PEDOT:PSS; Spray coating; Electrode; Organic field effect transistor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G.H. Kim, D.H. Hwang, S.I. Woo, Phys. Chem. Chem. Phys. 14 (2012) 3530.   DOI
2 H. Chang, G. Wang, A. Yang, X. Tao, X. Liu, Y. Shen, Z. Zheng, Adv. Funct. Mater. 20 (2010) 2893.   DOI
3 C.C. Liu, T.Y. Liu, K.S. Wang, H.M. Tsou, S.H. Wang, J.S. Chen, Surf. Coat. Technol. 303 (2016) 244.   DOI
4 T.W. Lee, Y. Chung, Adv. Funct. Mater. 18 (2008) 2246.   DOI
5 Y.J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Nano Lett. 9 (2009) 3430.   DOI
6 D.A. Mengistie, M.A. Ibrahem, P.C. Wang, C.W. Chu, Appl. Mater. Interfaces 6 (2014) 2292.   DOI
7 C. Yan, J. Wang, W. Kang, M. Cui, X. Wang, C.Y. Foo, K.J. Chee, P.S. Lee, Adv. Mater. 24 (2013) 2022.
8 M.Y. Lee, J. Hong, E.K. Lee, H. Yu, H. Kim, J.U. Lee, W. Lee, J.H. Oh, Adv. Funct. Mater. 24 (2016) 1445.
9 K.H. Lee, M.S. Kang, S. Zhang, Y. Gu, T.P. Lodge, C.D. Frisbie, Adv. Mater. 24 (2012) 4457.   DOI
10 S.S. Yoon, K.E. Lee, H.J. Cha, D.G. Seong, M.K. Um, J.H. Byun, Y.S. Oh, J.H. Oh, W. Lee, J.U. Lee, Sci. Rep. 5 (2015) 16366.   DOI
11 J. Lee, L.G. Kaake, J.H. Cho, X.Y. Zhu, T.P. Lodge, C.D. Frisbie, J. Phys. Chem. 113 (2009) 8972.
12 S.Y. Min, T.S. Kim, B.J. Kim, H. Cho, Y.Y. Noh, H. Yang, J.H. Cho, T.W. Lee, Nat. Commun. 4 (2013) 1773.   DOI
13 K. Parvez, R. Li, S.R. Puniredd, Y. Hernandez, F. Hinkel, S. Wang, X. Feng, K. Mullen, ACS Nano 7 (2013) 3598.   DOI
14 S.I. Na, S.S. Kim, J. Jo, D.Y. Kim, Adv. Mater. 20 (2008) 4061.   DOI
15 J.W. Jo, J.W. Jung, J.U. Lee, W.H. Jo, ACS Nano 4 (2010) 5382.   DOI
16 S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, J.N. Coleman, ACS Nano 3 (2009) 1767.   DOI
17 P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, N.D. Robinson, ACS Nano 4 (2010) 637.   DOI
18 D. Khim, K.J. Baeg, B.K. Yu, S.J. Kang, M. Kang, Z. Chen, A. Facchetti, D.Y. Kim, Y.Y. Noh, J. Mater. Chem. C 1 (2013) 1500.   DOI
19 A. Southard, V. Sangwan, J. Cheng, E.D. Williams, M.S. Fuhrer, Org. Electron. 10 (2009) 1556.   DOI
20 Y. Kim, Y.J. Kwon, K.E. Lee, Y. Oh, M.K. Um, D.G. Seong, J.U. Lee, Nanomaterials 6 (2016) 147.   DOI
21 S. Pang, H.N. Tsao, X. Feng, K. Mullen, Adv. Mater. 21 (2009) 3488.   DOI
22 Y.I. Na, Y.I. Song, S.W. Kim, S.J. Suh, Carbon Lett. 24 (2017) 1.
23 Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K. Mullen, Adv. Mater. 28 (2016) 2217.   DOI
24 K. Parvez, Z.S. Wu, R. Li, X. Liu, R. Graf, X. Feng, K. Mullen, J. Am. Chem. Soc. 136 (2014) 6083.   DOI
25 I.W.P. Chen, Y.S. Chen, N.J. Kao, C.W. Wu, Y.W. Zhang, H.T. Li, Carbon 90 (2015) 16.   DOI
26 W. Wei, G. Wang, S. Yang, X. Feng, K. Mullen, J. Am. Chem. Soc. 137 (2015) 5576.   DOI
27 W. Zhang, Y. Zeng, N. Xiao, H.H. Hng, Q. Yan, J. Mater. Chem. 22 (2012) 8455.   DOI
28 C.H. Chen, S.W. Yang, M.C. Chuang, W.Y. Woon, C.Y. Su, Nanoscale 7 (2015) 15362.   DOI
29 M. Vosgueritchian, D.J. Lopomi, Z. Bao, Adv. Funct. Mater. 22 (2012) 421.   DOI
30 Y.S. Liu, J. Feng, X.L. Ou, H.F. Cui, M. Xu, H.B. Sun, Org. Electron. 31 (2016) 247.   DOI
31 A.L. Briseno, M. Roberts, M.M. Ling, H. Moon, E.J. Nemanick, Z. Bao, J. Am. Chem. Soc. 128 (2006) 3880.   DOI
32 B. Sanyoto, S. Kim, W.T. Park, X. Xu, J.H. Kim, J.C. Lim, Y.Y. Noh, Org. Electron. 37 (2016) 352.   DOI
33 Q. Chen, F. Zabihi, M. Eslamian, Synth. Met. 222 (2016) 309.   DOI
34 Z. Liu, K. Parvez, R. Li, R. Dong, X. Feng, K. Mullen, Adv. Mater. 27 (2015) 669.   DOI
35 H.E.A. Huitema, G.H. Gelinck, J.B.P.H. van der Puttern, K.E. Kuijk, C.M. Hart, E. Cantatore, P.T. Herwig, A.J.J.M. van Breemen, D.M. de Leeuw, Nature 414 (2001) 599.   DOI
36 Y. Wu, Y. Li, S. Gardner, B.S. Ong, J. Am. Chem. Soc. 127 (2005) 614.   DOI
37 H. Sirringhaus, Adv. Mater. 26 (2014) 1319.   DOI
38 C. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, D. Zhu, Adv. Mater. 20 (2008) 3289.   DOI
39 C. Yeon, S.J. Yun, J. Kim, J.W. Lim, Adv. Electron. Mater. 1 (2015) 1500121.   DOI
40 T. Takano, H. Masunaga, A. Fujiwara, H. Okuzaki, T. Sasaki, Macromolecules 45 (2012) 3859.   DOI
41 F. Greco, A. Zucca, S. Taccola, A. Menciassi, T. Fujie, H. Haniuda, S. Takeoka, P. Dario, V. Mattoli, Soft Matter 7 (2011) 10642.   DOI
42 X. Wu, J. Liu, G. He, Org. Electron. 22 (2015) 160.   DOI
43 Y.J. Song, J.U. Lee, W.H. Jo, Carbon 48 (2010) 389.   DOI
44 S. Lee, H. Jeon, M. Jang, K.Y. Baek, H. Yang, ACS Appl. Mater. Interfaces 7 (2015) 1290.   DOI
45 H. Rost, J. Ficher, J.S. Alonso, L. Leenders, I. Mcculloch, Synth. Met. 145 (2004) 83.   DOI
46 F. Giubileo, A.D. Bartolomeo, Prog. Surf. Sci. 92 (2017) 143.   DOI