• Title/Summary/Keyword: Electrode treatment

Search Result 693, Processing Time 0.029 seconds

Study on the characteristics of the organic thin-film transistors according to the gate electrode surface treatments

  • Kim, Hye-Min;Park, Jae-Hoon;Bong, Kang-Wook;Kang, Jong-Mook;Lee, Hyun-Jung;Han, Chang-Wook;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1292-1294
    • /
    • 2007
  • In this report, the effects of chemical surface treatments of ITO gate electrodes of OTFTs have been studied by using acid and base solutions. As a result, it is observed that the threshold voltage of OTFTs could be influenced and modified by the surface treatments. The device with an ITO gate electrode surface-treated by a base solution shows the lowest threshold voltage of -7.66 V, while the threshold voltages are about -13.51 V and -15.3 V for the devices without a surface treatment and with the acid solution treatment, respectively. It is thought that the work function of ITO electrode surface might be affected by the surface treatments, thereby influencing the threshold voltage.

  • PDF

Fabrication of interface-controlled Josephson junctions using Sr$_2$AlTaO$_6$ insulating layers

  • Kim, Jun-Ho;Choi, Chi-Hong;Sung, Gun-Yong
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.165-168
    • /
    • 2000
  • We fabricated ramp-edge Josephson junctions with barriers formed by interface treatments instead of epitaxially grown barrier layers. A low-dielectric Sr$_2$AlTaO$_6$(SAT) layer was used as an ion-milling mask as well as an insulating layer for the ramp-edge junctions. An ion-milled YBa$_2$Cu$_3$O$_{7-x}$ (YBCO)-edge surface was not exposed to solvent through all fabrication procedures. The barriers were produced by structural modification at the edge of the YBCO base electrode using high energy ion-beam treatment prior to deposition of the YBCO counter electrode. We investigated the effects of high energy ion-beam treatment, annealing, and counter electrode deposition temperature on the characteristics of the interface-controlled Josephson junctions. The junction parameters such as T$_c$, I$_c$c, R$_n$ were measured and discussed in relation to the barrier layer depending on the process parameters.

  • PDF

DC Magnetron Sputtering of Cr/Cu/Cr Metal Electrodes for AC Plasma Display panel (DC Magnetron Sputtering 법에 의한 AC Plasma Display panel의 Cr/Cu/Cr 금속전극 제조)

  • 남대현;이경우;박종완
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.8
    • /
    • pp.704-710
    • /
    • 2000
  • Metal electrode materials for plasma display panel should have low electrical resistivity in order to maintain stable gas discharge and have fast response time. They should also hae good film uniformity adhesion and thermal stability. In this study Cr/Cu/Cr metal electrode structure is formed by DC magnetron sputtering. Cr and Cu films were deposited on ITO coated glasses with various DC power density and main pressures as the major parameters. After metal electrodes were formed a heat treatment was followed at 55$0^{\circ}C$ for 20 min in a vacuum furnace. The intrinsic stress of the sputtered Cr film passed a tensile stress maximum decreased and then became compressive with further increasing DC power density. Also with increasing the main pressure stress turned from compression to tension. After heat the treatment the electrical resistivity of the sputtered Cu film of 2${\mu}{\textrm}{m}$ in thickness prepared at 1 motor with the applied power density of 3.70 W/cm$^2$was 2.68 $\mu$$\Omega$.cm With increasing the main pressure the DC magnetron sputtered Cu film became more open structure. The heat treatment decreased the surface roughness of the sputtered Cr/Cu/Cr metal electrodes.

  • PDF

Study of Laryngeal Evoked Electromyography Method in Rats (백서를 이용한 후두 유발 근전도 검사 방법에 대한 연구)

  • 조선희;이재연;민선식;신유리;정성민
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.11 no.2
    • /
    • pp.178-184
    • /
    • 2000
  • Laryngeal evoked EMG is the objective and quantitative method to measure the innervation of laryngeal muscle. If there is a mobility disorder of vocal cords, the cause and location of neural lesion co be understood by the laryngeal evoked EMG and if there is a vocal cord paralysis, the degree of recovery and the policy of treatment can be determined by it. Recently, the studies of reinnervation after recurrent laryngeal nerve injury have been actively carried out. Laryngeal evoked EMC is useful to these studies. The aim of study is to know whether noninvasive methods for stimulating the recurrent laryngeal nerve and for recording of compound action potential(CAP) using surface electrode are as useful as the invasive method using needle electrode. We obtained EMG of laryngeal muscle by various stimulating and recording methods : 1) Direct nerve stimulation by placing nerve cuff electrode made out of silastic tube and platinum wire and recording by insertion of hook wire electrode into posterior cricoarytenoid(PCA) and thyroarytenoid(TA) muscles, respectively. 2) Recording of compound action potential by surface electrode after stimulation of recurrent laryngeal nerve by the insertion of 27 gauge of needle electrode. 3) Recording of compound action potential by surface electrode after stimulating the recurrent laryngeal nerve by transcutaneous blunt rod electrode at tracheoesophageal groove. The amplitude, duration and latency of the CAP evoked by recurrent laryngeal nerve stimulation were compared among the three groups. The amplitude of CAP was smallest in the group recorded from posterior cricoarytenoid and hyroarytenoid muscle, and that recorded by surface electrode after stimulation by needle electrode was largest. The difference in amplitude between the group by hook wire recording and the two groups by surface electrode recording was significant statistically. There is no significant difference in duration and latency among three groups. Since the waveform of CAP from all three methods has similar duration, latency, we concluded that noninvasive method is a useful as invasive methods.

  • PDF

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF

Synthesis of Activated Carbon from a Bio Waste (Flower of Shorea Robusta) Using Different Activating Agents and Its Application as Supercapacitor Electrode

  • Ghosh, Souvik;Samanta, Prakas;Murmu, Naresh Chandra;Kim, Nam Hoon;Kuila, Tapas
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • The activated carbon is a very good choice for using as supercapacitor electrode materials. Herein, the flower of Shorea robusta, a bio-waste material was successfully used to synthesize the activated carbons for application as supercapacitor electrode materials. The activated carbon was synthesized through chemical activation process followed by thermal treatment at 700℃ in presence of N2 atmosphere using KOH, ZnCl2 and H3PO4 as the activating agents. The physicochemical analyses demonstrate that the obtained activated carbons are graphitic in nature and the degree of disorder of the graphitic carbons is changed with the activating agents. The activated carbon obtained from Shorea robusta flower (ACSF-K) electrode shows the specific capacitance of ~610 F g-1 at 2 A g-1 current density, which is higher than ACSF-Z (560 F g-1) and ACSF-H (470 F g-1) electrode material under the identical current density. The synthesized graphitic carbons also demonstrated good rate capability and high electrochemical stability as supercapacitor electrode.

Electrochemical Degradation of Textile Effluent Using PbO2 Electrode in Tube Electrolyzer

  • Chao Wang; Yongqiang Li;Junmin Wan;Yi Hu;Yi Huang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.190-197
    • /
    • 2024
  • A commercial PbO2 mesh cylinder electrode was utilized as the anode for the electrochemical degradation of the textile effluent after the biological treatment with the titanium cylinder as the cathode in a self-made tube electrolyzer. The electrochemical performances of the PbO2 electrode in tube electrolyzer under different initial pH, electrolyte flow rates, current densities and times of the electrochemical degradation were investigated. The experimental results illustrated that the PbO2 electrode can reduce the chemical oxygen demand (COD) of the textile effluent from 94.0 mg L-1 to 65.0 mg L-1 with the current efficiency of 88.3%, the energy consumption of 27.7 kWh kg-1 (per kilogram of degraded COD) and the carbon emissions of 18.0 kg CO2 kg-1 (per kilogram of degraded COD) under the optimal operating conditions. In addition, the COD of the textile effluent could be reduced from 94.0 mg L-1 to 22.0 mg L-1 after the fifth electrochemical degradation. Therefore, PbO2 mesh cylinder electrode in the tube cylinder was promising for the electrochemical degradation of the textile effluent.

Application of Electrochemical Method for Decolorization of Biologically Treated Animal Wastewater Effluent (생물학적 축산폐수 처리수 색도제거를 위한 전기화학적 방법의 적용)

  • 윤성준;신종서;라창식
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.315-324
    • /
    • 2006
  • This research was conducted to clarify the characteristics of electrochemical decolorization of effluent discharged from a biological animal wastewater treatment process and to finally establish parameters or mode for optimum operation of electrolysis system. Average color unit of wastewater was about 1,200 and DSA(Dimensionally Stable Anode) was used as electrode. Experiments were performed with two different operation conditions or modes, fixed voltage-free current(Run A) and free voltage-fixed current(Run B). Color removal rate was proportional to the electrode area and electrical conductivity, and an equation subject to them at a condition of fixed voltage was derived as follows; Ct=C0ekt, k=[{0.0121×a(dm2)× c(mS/cm)}+0.0288], [where, C0: initial color, Ct: color unit after treatment for t, k: reaction coefficient, t: time(min.), a: electrode area, c: conductivity]. From the study on the effects of current density on color removal, it was revealed that the removal efficiency of color was function of the current density, showing direct proportion. However, when considered energy consumption rate, maintenance of low current density was an economical way. Based on the obtained results, it was concluded that supplementation of electrolyte is not necessary for the removal of color from the effluent of secondary treatment process and operation with the mode of free voltage-fixed current, rather than operation with fixed voltage-free current mode, would be an efficient way to increase the removal performance and capacity per consumed energy.

A Study on Development of 2MHz High-frequency Rehabilitation Treatment Device for Deep Part (심부투열용 2MHz 고주파 재활치료기의 개발에 관한 연구)

  • Ahn, Jong-Bok;Kim, Sang-Beom;Won, Cheol-Hee;Kim, Sung-Hoon;Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.3
    • /
    • pp.117-122
    • /
    • 2017
  • Due to the aging and obesity population in Korea, degenerative musculoskeletal diseases and people suffering from degenerative arthritis are increasing day by day. So, it is necessary to develop rehabilitation treatment device. Conventional high-frequency treatment devices have disadvantages in that therapeutic range is narrow, cost is high, image is adversely affected, treatment time is long, and failure rate is high. This paper proposes a customized therapy device that is stable and effective in reducing treatment time and output to target body part using 2MHz switching frequency, feedback control technique, and joint insulation flexible multipolar electrode. The device can be a new concept high-frequency stimulator to accommodate the advantages of CET and RET.

A study of DSC using Ultrasonic and Thermal treatment on nano-crystalline $TiO_{2}$ surface (염료감응형 태양전지 $TiO_{2}$ 광전극 표면의 초음파 열처리에 관한 연구)

  • Hong, Ji-Tae;Choi, Jin-Young;Seo, Hyun-Woong;Kim, Jong-Lak;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.317-319
    • /
    • 2007
  • Recently, there were many researches for efficiency improvement of DSC. Among of these works, research of surface treatment is still a prerequisite for electron diffusion, light-harvesting and surface state of $DSC^{4)}$. Using of the surface treatment, it can be raise up porosity of $TiO_{2}$ nano-crystalline structure on $photo-electrode^{5)}$. There are chemical, physical, electrical and optical methods which raise up its porosity. In this paper, we have designed and manufactured MOPA-type ultrasonic circuit (100W, frequency and duty variable). Manufactured ultrasonic circuit to use to force cavity density and power into $TiO_{2}$ paste. Then, we have optimized forcing time, frequency and duty of ultrasonic irradiation for surface treatment of photo-electrode of DSC. In I-V characteristic test of DSC, ultrasonic and thermal treated DSC shows 19% improved its efficiency against established DSC.

  • PDF