• Title/Summary/Keyword: Electrode spacing

Search Result 100, Processing Time 0.022 seconds

Evaluation of Electrolyte and Electrode Spacing for Application of Electrokinetic Remediation (전기동력학적 정화기술 적용을 위한 최적의 전해질 선택 및 전극간의 거리 평가)

  • Park, Geun-Yong;Kim, Woo-Seung;Kim, Do-Hyung;Yang, Jung-Seok;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.6-15
    • /
    • 2013
  • The influence of processing fluids and electrode spacing on the electrokinetic process was evaluated to remediate As-, Cu-, Pb-contaminated soil. Single and mixture of sodium citrate, EDTA and NaOH was used to investigate the metal extraction. EDTA for washing reagent showed the highest removal efficiency. Based on the extraction result, the electrode spacing (20, 40, 60 cm) on the electrokinetic process was investigated to remove the multi-metals from soil. The highest removal was observed at the experiment with 60 cm of electrode spacing, however, the correlation between electrode spacing and removal of metals was not clear. The electrode spacing influenced the amount of accumulated electro-osmotic flow. BCR sequential extraction showed that electrokinetic process removed the fractionation of metals bound to Fe-Mn oxyhydroxide.

NOx Gas Detection Characteristics of MWCNT Gas Sensor by Electrode Spacing Variation (MWCNT 가스센서의 전극 간극 변화에 따른 NOx 가스 검출 특성)

  • Kim, Hyun-Soo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.668-672
    • /
    • 2014
  • Carbon nanotubes(CNT) has chemical stability and great sensitivity characteristics. In particular, the gas sensor required characteristics such as rapid, selectivity and sensitivity sensor. Therefore, CNT are ideal materials to gas sensor. So, we fabricated the NOx gas sensors of MOS-FET type using the MWCNT (multi-walled carbon nanotube). The fabricated sensor was used to detect the NOx gas for the variation of $V_{gs}$(gate-source voltage) and electrode changed electrode spacing=30, 60, 90[${\mu}m$]. The gas sensor absorbed with the NOx gas molecules showed the decrease of resistance, and the sensitivity of sensor was increased by magnification of electrode spacing. Furthermore, when the voltage($V_{gs}$) was applied to the gas sensor, the decrease in resistance was increased. On the other hand, the sensor sensitivity for the injection of NOx gas was the highest value at the electrode spacing $90[{\mu}m]$. We also obtained the adsorption energy($U_a$) using the Arrhenius plots by the reduction of resistance due to the voltage variations. As a result, we obtained that the adsorption energy was increased with the increment of the applied voltages.

광폭 전기집진기의 집전특성에 관한 연구 - I. 집진판 간격과 방전극의 영향 -

  • 김용진;하병길;정상현;홍원석;여석준;유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.939-946
    • /
    • 2001
  • This study investigates the electrical and collection characteristics of a wide plate spacing electrostatic precipitator (ESP), using a pilot-scale one. Electrical operating characteristics and collection efficiency were measured for various shapes of discharge electrodes. The collection plate spacing ranged from 300 to 550 mm. Results of electrical characteristic and collection efficiency tests as a function of collection plate spacing, discharge electrode type, applied voltage, and particle diameter were obtained. Increasing the collection plate pitch and altering the corona electrode geometry was found to increase the collection efficiencies without increasing input power requirement. The best efficiency is achieved for the discharge electrode of twisted pin type.

  • PDF

Effects of Corona Electrode Shape and Discharge Gap Spacing on Ozone Concentration (방전공격과 방전극 형상이 오존발생농도에 미치는 영향)

  • Park, Seung-Lok;Lee, Jae-Chan;Jung, Sung-Jin;Moon, Jae-Duk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.4
    • /
    • pp.169-175
    • /
    • 2001
  • Ozone has been widely applied to many industrial fields because of its strong oxidation power, Therefore, the studies have been carried out for the methods on an effective and high concentration ozone generation. The silent or surface discharge type ozone generators have been mainly used for high concentration ozone generation in many fields of applications. But these two types of ozone generators have shortcomings to be improved. In this study, the ozone generator which improved the shortcomings of above ozone generators was proposed and fabricated for the high concentration ozone generation. And the proposed ozone generator could generate the surface and barrier discharge simultaneously. For this purpose, a mesh type discharge electrode was proposed and studied as a function of the widths output maximum ozone concentration of 2.96[vol%] was obtained at 5.6[kV], 830[mA], for 0.3[mm] width and 0.8[mm] vacancy of the mesh electrode and gap spacing of 0.65[mm] respectively.

  • PDF

Influence of Electrode Spacing on Methane Production in Microbial Electrolysis Cell Fed with Sewage Sludge (하수슬러지를 기질로 하는 미생물전기분해전지에서 전극간 거리가 메탄 생산에 미치는 영향)

  • Im, Seongwon;Ahn, Yongtae;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.12
    • /
    • pp.682-688
    • /
    • 2015
  • Effect of electrode spacing on the performance of microbial electrolysis cells(MECs) for treating sewage sludge was investigated through lab scale experiment. The reactors were equipped with two pairs of electrodes that have a different electrode spacing (16, 32 mm). Shorter electrode distance improved the overall performance of MEC system. With the 16 mm of electrode distance, the current density was $3.04{\sim}3.74A/m^3$ and methane production was $0.616{\sim}0.804Nm^3/m^3$, which were higher than those obtained with 32 mm of electrode spacing ($1.50{\sim}1.82A/m^3$, $0.529{\sim}0.664Nm^3/m^3$). The COD removal was in the range of 34~40%, and the VSS reduction ranged 32~38%. As the current production increased, VSS reduction and methane production were increased possibly due to the improved bioelectrochemical performance of the system. Methane production was more affected by current density than VSS reduction. These results imply that the reducing the electrode spacing can enhance the methane production and recovery from sewage sludge with the decreased internal resistance, however, it was not able to improve VSS reduction of sewage sludge.

A Numerical Study on the Collection Characteristics of a Wide Plate-Spacing Electrostatic Precipitator (광폭 전기집진기의 집진 특성에 관한 수치적 연구)

  • 김용진;홍원석;정상현;하병길;하대홍;유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1205-1213
    • /
    • 2001
  • The electrical characteristics and particle collection efficiency of a wide-plate spacing electrostatic precipitator are numerically investigated, and the results are compared with those obtained experimentally. The electric potential and field strength near the collection plate increase with increasing the plate spacing. The electric field strength of a discharge electrode of a twisted pin type is larger than that of a rectangular type. As the roughness factor of the discharge electrode wire becomes small, or the plate spacing becomes narrow, the corona current of the precipitator increases. The numerical results agree well with those obtained from experimental method.

  • PDF

Study on the Breakdown of the Transformer Insulating Oil in Nonuniform Electric Field (불평등 전계에서 변압기 절연유 절연파괴 연구)

  • Ha-Young Cho;Soon-Hyung Lee;Mi-Yong Hwang;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.280-285
    • /
    • 2023
  • A breakdown voltage and breakdown electric field of the transformer insulating oil of liquid dielectric were studied in uniform electric field and non-uniform electric field and the transformer insulating oil was observed by the process reached breakdown. Insulation performance evaluation of the liquid dielectric was evaluated at the electrode spacing of 2.5 mm under the conditions of domestic and international standards (KS C IEC 60156), so a comparative review was conducted at the electrode spacing of 2.5 mm. When the electrode spacing is 2.5 mm, the average breakdown voltage is 38.5 kV for sphere-sphere electrodes, 26.6 kV for plate-plate electrodes, 22.9 kV for needle-needle electrodes, and 24.3 kV for sphere-needle electrodes. 23.7 kV for the sphere-plate electrode, and 20.7 kV for the needle-plate electrode. From these results, it can be seen that the average value of the breakdown voltage at the electrode spacing of 2.5 mm, in ascending order, is sphere-sphere, plate-plate, sphere-needle, sphere-plate, needle-needle and needle-plate. It was found that the breakdown voltage of the unequal field was lower than that of the equal field.

The Analysis on the Effect of Improving Aspect Ratio and Electrode Spacing of the Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 전극 종횡비 개선과 전극 간 간격이 효율에 미치는 영향 분석)

  • Kim, Min Young;Park, Ju-Eok;Cho, Hae Sung;Kim, Dae Sung;Byeo, Seong Kyun;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.209-216
    • /
    • 2014
  • The screen printed technique is one of the electrode forming technologies for crystalline silicon solar cell. It has the advantage that can raise the production efficiency due to simple process. The electrode technology is the core process because the electrode feature is given a substantial factor (for solar cell efficiency). In this paper, we tried to change conditions such as squeegee angle $55{\sim}75^{\circ}$, snap off 0.5~1.75 mm, printing pressure 0.6~0.3 MPa and 1.6~2.0 mm finger spacing. As a result, the screen printing process showed an improved performance with an increased height higher finger height. Optimization of fabrication process has achieved 17.48% efficiency at screen mesh of 1.6 mm finger spacing.

Effective Oxidant Generation and Ion Precipitation Characteristics of Electrolyzing Cell by Discharge and Space Charge Control (수중 방전과 공간전하제어에 의한 효과적인 산화성물질 발생특성)

  • Kim, Jin-Gyu;Lee, Dae-Hee;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.9-12
    • /
    • 2000
  • A new type electrolyzing cell with slits on parallel plate electrodes and wire-to-cylinder type electrode system has been proposed instead of the conventional parallel plate type. An investigation was carried out on the effect of the number and size of slits on ion precipitation and oxidant generation characteristics, evidenced by eliminated space charge limiting action and by elevated electric fields in active interelectrode spacing. And it is also studied on the effect of the diameter of wire electrode to ion precipitation and oxidant generation characteristics. With electrode with 48 slits, very oxidants generation water of 3.1 [ppmm] and 19.0 [ppmm] in positive electrode side were obtained with tap water and 0.1 [wt%] NaCl dissolved tap waterfed. In addition, with wire-to-cylinder type electrode system, it is found that oxidant contained water of 0.48 [ppmm] and 5.46 [ppmm] in positive electrode side were obtained with tap water and 0.1 [wt%] NaCl dissolved tap water fed for the case of discharge electrode diameter of 0.5 [$mm{\phi}$]. Consequently, very high ion precipitation and dense oxidant generation characteristics can be realized by having slits on the electrodes of conventional cell as these slits increase the electric fields and decrease the space charge limiting actions in interelectrode spacing.

  • PDF

Improvement Effect and Electrical Characteristics of Soft Ground with Plastic Electrode Spacing (전극간 거리에 따른 연약지반의 지반개량 효과와 전기적 특성)

  • Byeon, Inseong;Kang, Hongsig;Sun, Seokyoun;Han, Jeonghoon;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Soft ground stabilization is needed to construct large civil facilities on the soft clay ground. Pre-loading method, which is accelerating consolidation method, is generally used to stabilize the soft ground. However, pre-loading method is required long construction period and quantities of fill material. Therefore, electro-osmosis method is used to replace pre-loading method for stabilizing the soft ground. Electro-osmosis method is disadvantageous in constructive and economic aspects because it is needed a metallic electrode. So, in order to solve the those disadvantages, plastic electrode was developed to replace metallic electrode. Plastic electrode, which is made by using nano-technology on existing Plastic Drain Board (PDB), was used to supply the electric power. In this study, therefore, the model test was conducted to confirm the effect of improvement and electrical characteristics of soft ground by spacing of plastic electrode. The result shows that the effect of improvement of soft ground was decreased up to 45% by increasing electrode spacing and electrical characteristics on the soft ground were influenced by consolidation settlement with electrode spacing.