• Title/Summary/Keyword: Electrode microstructure

Search Result 187, Processing Time 0.03 seconds

Preparation of Crack-free HTS YBCO Films by EPD Method

  • Soh, Dea-Wha;Li Yingmei;Nataly Korobova
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.6-9
    • /
    • 2003
  • Electrophoretic deposition (EPD) of alcohol YBCO suspensions on the Ag wire electrode is studied. Polyethyleneglycol was coordinated to a structure formed by the EPD process with YBCO particles. The d.c electric fields of 200-300 V/cm are applied for 1-10 min. The optimal condition for the EPD allows modifying the properties and microstructure of the deposited films. Superconducting coatings with nanometer-sized pores and a preferred orientation along the caxis were prepared from the result with chemically modified precursor solution. In contrast, YBCO coatings of submicrometer-sized pores and randomly orientated grains were prepared from the solution without PEG.

Preparation of Non-cracking YBCO Films Using Eelectrophoretic Deposition

  • Soh, Deawha;Korobova, Natalya
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.117-122
    • /
    • 2004
  • Electrophoretic deposition (EPD) of alcohol YBCO suspensions on the Ag wire electrode was studied. Poly(ethylene glycol) was coordinated to a structure formed by the EPD process with YBCO particles. The suspension is characterized in terms of zeta potential and conductivity. The d.c electric fields of 200-300V/cm are applied for 1-10 min. The optimal condition for the EPD allows modifying the properties and microstructure of the deposited films. Superconducting coatings with nanometer-sized pores and a preferred orientation along the c-axis were prepared from the result with chemically modified precursor solution. In contrast, YBCO coatings of sub-micrometer sized pores and randomly orientated grains were prepared from the solution without PEG

  • PDF

Characteristics of indium zinc oxide thin films with input power and film thickness (투입전력 및 두께 변화 조건에 따른 Indium zinc oxide 박막의 특성)

  • Rim, You-Seung;Kim, Sang-Mo;Keum, Min-Jong;Son, In-Hwan;Jang, Kyung-Wook;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.406-407
    • /
    • 2007
  • We prepared indium zinc oxide (IZO) thin film for cathode electrode such as an application of flat panel display by using the facing targets sputtering (FTS) method at room temperature. The effects of input power and film thickness were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, microstructure and transmittance. We could obtain properties of IZO thin films of under $10^{-3}\;{\Omega}-cm$ in resistivity and the thin films of over 90% in transmittance. Also, we obtained IZO thin films which were an amorphous structure.

  • PDF

Microstructure and Dielectric Properties of SCT Thin Film with Annealing Temperature (열처리 온도에 따른 SCT 박막의 미세구조 및 유전특성)

  • 김진사;조춘남;신철기;박건호;최운식;이성일;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.244-247
    • /
    • 1999
  • The(Sr$\sub$0.85/Ca$\sub$0.15/) TiO$_3$(SCT) thin films are deposited on Pt-coated electrode(Pt/TiN/SiO$_2$/Si) using RF sputtering method. The composition of SCT thin films deposited on Si substrate at room temperature is close to stoichiometry(1.102 in A/B ratio). Also, SCT thin films deposited on Pt-coated electrodes have the cubic perovskite structure and polycrystalline state. The maximum dielectric constant of SCT thin films is obtained by annealing at 600[$^{\circ}C$].The dielectric constant changes almost linearly in temperature ranges of -80~+90[$^{\circ}C$].

  • PDF

A Study on Effects of Welding Clearance on Spot Weldability (점용접 간극이 용접성에 미치는 영향에 관한 연구)

  • 임재규;양승현;국중하
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.55-61
    • /
    • 2002
  • The automobile is made up of about twenty thousand parts. Some parts are formed by pressing and combined by spot welding. Among them, steel palate of fuel tank is formed in the metal mold and bending parts are jointed by spot and seam welding. To find weldability conditions of spot welding, clearance between two welding steel plates was made and after spot welding, weldability is evaluated by means of tensile shear load, nugget size and shape. Specimen used in this study was a mild steel of 1.2mm thickness and electrode was Cu-Cr alloy of 6mm diameter. When spot welding started, the clearance of two steel plates was changed 0mm, 3mm and 5mm step by step. The fractured surface of specimen after this test was observed by Optical Microscope to measure microstructure and nugget shape. When clearance of two specimen was 3mm and 5mm, strength and nugget size was decreased and nugget shape was not clear.

Ni added Si-Al Alloys with Enhanced Li+ Storage Performance for Lithium-Ion Batteries

  • Umirov, Nurzhan;Seo, Deok-Ho;Jung, Kyu-Nam;Kim, Hyang-Yeon;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.82-88
    • /
    • 2019
  • Here, we report on nanocrystalline Si-Al-M (M = Fe, Cu, Ni, Zr) alloys for use as an anode for lithium-ion batteries, which were fabricated via a melt-spinning method. Based on the XRD and TEM analyses, it was found that the Si-Al-M alloys consist of nanocrystalline Si grains surrounded by an amorphous matrix phase. Among the Si-Al-M alloys with different metal composition, Ni-incorporated Si-Al-M alloy electrode retained the high discharge capacity of 2492 mAh/g and exhibited improved cyclability. The superior $Li^+$ storage performance of Si-Al-M alloy with Ni component is mainly responsible for the incorporated Ni, which induces the formation of ductile and conductive inactive matrix with crystalline Al phase, in addition to the grain size reduction of active Si phase.

Fabrication of $CeO_2$ Buffer Layer Using MOD Process

  • Kim, Young-Kuk;Yoo, Jai-Moo;Chung, Kook-Chae;Ko, Jae-Woong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.4
    • /
    • pp.19-21
    • /
    • 2006
  • Biaxially textured Ni was fabricated by electrodeposition process and delaminated from the biaxially textured cathode surface for further buffer layer deposition process. Those electrode posited Ni substrates showed well-developed biaxial texture and smooth surface. In order to improve the thermal stability of Ni substrates, Mn was alloyed by adding Mn precursor into the electrodeposition bath. Subsequently, $CeO_2$ buffer layers are deposited by MOD process to prevent interfacial reaction between superconductor and substrates. In particular, Bismuth oxide was added to $CeO_2$ to realize lower temperature processing of buffer layers. The microstructure and texture development of each layers have been investigated. Preliminary results shows that all electro/chemical process can be a candidate for cost effective route to YBCO coated conductor.

A Study on the Dielectric Characteristics and Microstructure of $Si_3N_4$ Metal-Insulator-Metal Capacitors ($Si_3N_4$를 이용한 금속-유전체-금속 구조 커패시터의 유전 특성 및 미세구조 연구)

  • 서동우;이승윤;강진영
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.162-166
    • /
    • 2000
  • High quality $Si_3N_4$ metal-insulator-metal (MIM) capacitors were realized by plasma enhanced chemical vapor deposition (PECVD). Titanium nitride (TiN) adapted as a diffusion barrier reduced the interfacial reaction between $Si_3N_4$ dielectric layer and aluminum metal electrode showing neither hillock nor observable precipitate along the interface. The capacitance and the current-voltage characteristics of the MIM capacitors showed that the minimum thickness of $Si_3N_4$ layer should be limited to 500 $\AA$ under the present process, below which most of the capacitors were electrically shorted resulting in the devastation of on-wafer yield. According to the transmission electron microscopy (TEM) on the cross-sectional microstructure of the capacitors, the dielectric breakdown was caused by slit-like voids formed at the interface between TiN and $Si_3N_4$ layers when the thickness of $Si_3N_4$ layer was less than 500 $\AA$. Based on the calculation of thermally-induced residual stress, the formation of voids was understood from the mechanistic point of view.

  • PDF

Synthesis of Ni-YSZ cermets for SOFC by glycine nitrate process (Glycine nitrate process에 의한 SOFC용 Ni-YSZ cermets 제조)

  • Lee, Tae-Suk;Ko, Jung-Hoon;Kim, Bok-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.289-294
    • /
    • 2010
  • Ni-YSZ (Yttria Stabilized Zirconia) composite powders for SOFC were fabricated by glycine nitrate process. $ZrO(NO_3)_2{\cdot}2H_2O$, $Y(NO_3)_3{\cdot}6H_2O$, $Ni(NO_3)_2{\cdot}6H_2O$ and glycine were chosen as the starting materials. The structural properties of the sintered Ni-YSZ cermets have been investigated with respect to the volume contents of Ni. A porous microstructure consisting of homogeneously distributed Ni and YSZ phases together with well-connected grains was observed. The sintered Ni-YSZ cermets showed a porous microstructure consists of homogeneously distributed Ni and YSZ phases and the grains were well-connected. It was found that the open porosity is sensitive to the volume content of Ni. The Ni-YSZ cermet containing 35 vol% Ni seems to be suitable for the electrode material of SOFC since it provides sufficient open porosity higher than 30%.

Microstructure Control of Porous Ceramics by Freeze-Drying of Aqueous Slurry (동결건조공정을 이용한 다공성 세라믹스의 미세구조 제어)

  • 황해진;문지웅
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.229-234
    • /
    • 2004
  • In this study, we proposed new forming process for a porous ceramic body with unique pore structure. h tubular-type porous NiO-YSZ body with radially aligned pore channels was prepared by freeze-drying of aqueous slurry. A NiO-YSZ slurry was poured into the mold, which was designed to control the crystallization direction of the ice, followed by freezing. Thereafter the ice was sublimated at a reduced pressure. SEM observations revealed that the NiO-YSZ porous body showed aligned large pore channels parallel to the ice growth direction, and fine pores are formed around the outer surface of the tube. It was considered that the difference in the ice growth rate during the freezing process resulted in such a characteristic microstructure. Bilayer consisting of dense thin electrolyte film of YSZ onto the tubular type porous body has been successfully fabricated using a slurry-coating process followed by co-firing. It was regarded that the obtained bilayer structure is suitable for constructing electrode-support type electrochemical devices such as solid oxide fuel cells.