• 제목/요약/키워드: Electrode interface

검색결과 494건 처리시간 0.03초

Properties of Synthesis LSCF Cathode with pH Control using Oxalate Method (Oxalate법으로 합성한 LSCF의 pH 변화에 따른 공기극 특성)

  • Lee, Mi-Jai;Choi, Byung-Hyun;Kim, Sei-Ki;Lee, Mi-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.17-18
    • /
    • 2007
  • Solid oxide fuel cells are clean, pollution-free technology for the electrochemical generation of electricity at high efficiency. Specially, the polarization resistance between electrolyte and electrode of SOFC unit cell is of importance, because it is desirable to develop SOFC operating at intermediate temperature below $800^{\circ}C$. The LSCF cathode prepared using modified oxalate method was investigated with different electrolyte. A precursor was prepared with oxalic acid, ethanol and $NH_4OH$ solution. The LSCF precursor was prepared at $80^{\circ}C$, and pH control was 2, 6, 8, 9 and 10. The precursor powder was calcined at $800^{\circ}C$, $1000^{\circ}C$ and $1200^{\circ}C$ for 4hrs. The crystal of LSCF powders show single phase at pH 2, 6, 8 and 9, and the average particle size was about $3{\mu}m$. The LSCF cathode with heat treatment at $1200^{\circ}C$ showed a plot of electric conductivity versus temperature. Unit cell prepared from the LSCF cathode, buffer layer between cathode and electrolyte and the LSGM, YSZ, ScSZ and CeSZ electrolyte. Also interface reaction between LSCF, buffer layer and electrolyte were measured by EPMA and the polarization resistance for unit cell with cycle measure using a Solatron 1260 analyzer.

  • PDF

Electrical/Dielectric Characterization of 2-Dimenisonal Electron Gas Layers Formed between LaAlO3 and SrTiO3

  • Park, Chan-Rok;Kwon, Kyeong-Woo;Do, Woo-ri;Park, Da-Hee;Baek, Senug-Hyub;Kim, Jin Sang;Hwang, in-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.366.2-366.2
    • /
    • 2014
  • Impedance spectroscopy allows for simultaneous characterization of interface-controlled materials and/or devices in terms of electrical and dielectric aspects. Recently, there have tremendous interests in 2-dimensional electron gas layers (2DEGs) involving $LaAlO_3$ and $SrTiO_3$ whose features incorporates extremely high mobility and carrier concentrations along with metallic responses unlike the constituents, $LaAlO_3$ and $SrTiO_3$. Impedance spectroscopy offers the following unique features, such as simultaneous determination of conductivity and dielectric constants, identification of electrical origins among bulk-, grain boundary-, and electrode-based responses. Impedance spectroscopy was applied to the 2DEG $LaAlO_3/SrTiO_3$ system, in order to extract the electrical and dielectric information operating in the 2DEG system. The unique responses of the 2DEG system are investigated in terms of temperature and device structures. The underlying mechanism of the 2DEG system is proposed with the aim to optimizing the high-mobility 2DEG responses and to expedite the associated devices towards the high-density integrated chips.

  • PDF

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

Formation of Ohmic Contact in P-Type CdTe Using Cu2 Te Electrode and Its Effect on the Photovoltaic Properties of CdTe Solar Cells (Cu2Te 배면 전극을 이용한 p-type CdTe 태양전지의 ohmic contact 형성 및 CdTe 태양전지의 광전압 특성)

  • Kim, Ki-Hwan;Yun, Jae-Ho;Lee, Doo-Youl;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • 제12권12호
    • /
    • pp.918-923
    • /
    • 2002
  • In this work, CdTe films were deposited on CdS/ITO/glass substrate by a close spaced sublimation (CSS) method. A $Cu_2$Te layer was deposited on the CdTe film by evaporating $Cu_2$Te powder. Then the samples were annealed for p+ ohmic contact. TEM and XRD analysis showed that $CdTe/Cu_2$Te interface exhibited different forms with various annealing temperature. A good p+ ohmic contact was achieved when the annealing temperature was between $180^{\circ}C$ to $200^{\circ}C$. Best cell efficiency of 12.34% was obtained when post annealing temperature was $200^{\circ}C$ for 5 min. Thermal stress test of the CdS/CdTe cells with carbon back contact showed that the $Cu_2$Te contact was stable at $50^{\circ}C$ in $N_2$ and was slowly degraded at $100^{\circ}C$ in $N_2$. In comparison to the conventional carbon contact, the $Cu_2$Te contact showed a better thermal stability.

Design of E-Tongue System using Neural Network (신경회로망을 이용한 휴대용 전자 혀 시스템의 설계)

  • Jung, Young-Chang;Kim, Dong-Jin;Kim, Jeong-Do;Jung, Woo-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제6권2호
    • /
    • pp.149-158
    • /
    • 2005
  • In this paper, we have designed and implemented a portable e-tongue (electronic tongue) system using MACS (multi array chemical sensor) and PDA. The system embedded in PDA has merits such as comfortable user interface and data transfer by internet from on-site to remote computer. MACS was made up 7 electrodes (${NH_4}^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, pH) and a reference electrode. For learning the system, we adapted the Levenberg-Marquardt algorithm based on the back-propagation, which could iteratively learned the pre-determined standard patterns, in e-tongue system. Conclusionally, the relationship between the standard patterns and unknown pattern can be easily analyzed. The e-tongue was applied to whiskeys and cognac (one high level whisky, one low level whiskey, two cognac) and 2 sample whiskeys for each standard patterns and unknown patterns. The relationship between the standard patterns and unknown patterns can be easily analyzed.

  • PDF

Interfacial Layer Control in DSSC

  • Lee, Wan-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.75-75
    • /
    • 2011
  • Recently, dye-sensitized solar cell (DSSC) attracts great attention as a promising alternative to conventional silicon solar cells. One of the key components for the DSSC would be the nanocrystalline TiO2 electrode, and the control of interface between TiO2 and TCO is a highly important issue in improving the photovoltaic conversion efficiency. In this work, we applied various interfacial layers, and analyzed their effect in enhancing photovoltaic properties. In overall, introduction of interfacial layers increased both the Voc and Jsc, since the back-reaction of electrons from TCO to electrolyte could be blocked. First, several metal oxides with different band gaps and positions were employed as interfacial layer. SnO2, TiO2, and ZrO2 nanoparticles in the size of 3-5 nm have been synthesized. Among them, the interfacial layer of SnO2, which has lower flat-band potential than that of TiO2, exhibited the best performance in increasing the photovoltaic efficiency of DSSC. Second, long-range ordered cubic mesoporous TiO2 films, prepared by using triblock copolymer-templated sol-gel method via evaporation-induced self-assembly (EISA) process, were utilized as an interfacial layer. Mesoporous TiO2 films seem to be one of the best interfacial layers, due to their additional effect, improving the adhesion to TCO and showing an anti-reflective effect. Third, we handled the issues related to the optimum thickness of interfacial layers. It was also found that in fabricating DSSC at low temperature, the role of interfacial layer turned out to be a lot more important. The self-assembled interfacial layer fabricated at room temperature leads to the efficient transport of photo-injected electrons from TiO2 to TCO, as well as blocking the back-reaction from TCO to I3-. As a result, fill factor (FF) was remarkably increased, as well as increase in Voc and Jsc.

  • PDF

The Addition of Carbon Black to Raney Nickel Hydrogen Electrodes for Alkaline Fuel Cells (알칼리 연료전지용 라니니켈 수소극에서 카본블랙의 첨가)

  • Jo, Jang-Ho;Lee, Sang-Gon;Cho, Won-Il;Kim, Young Chai;Yi, Sung-Chul;Lee, Ju-Seong;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • 제8권6호
    • /
    • pp.927-933
    • /
    • 1997
  • The effects of carbon black on the electrodes performance and on the structure of the catalyst layer in Raney nickel hydrogen electrodes for alkaline fuel cells were investigated by using electrochemical and nitrogen adsorption methods. The optimum content of carbon black in the catalyst layer of Raney nickel hydrogen electrode was 2wt%. The limiting current density was increased by the addition of carbon black due to the enlargement of gas-liquid interface area. The rate determining step at the limiting current density was supposed to be a step where hydrogen dissolves at gas-liquid interfaces.

  • PDF

Formation and Current-voltage Characteristics of Molecularly-ordered 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine film (분자배열된 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine 박막 제조와 전기적 특성)

  • Kang, Do Soon;Choe, Youngson
    • Applied Chemistry for Engineering
    • /
    • 제18권5호
    • /
    • pp.506-510
    • /
    • 2007
  • Vacuum deposited 4,4',4''-tris(N-(1-naphthyl)-N-phenylamino)-triphenylamine (1-TNATA), a widely-used semiconductor material, is placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in OLEDs and a well-stacked 1-TNATA layer leads to stable and high efficiency devices by reducing the carrier injection barrier at the interface between the ITO anode and hole transport layers. According to Raman spectra, thermal annealing after deposition as well as electromagnetic field treatment during deposition lead to closer stacking of 1-TNATA molecules and resulted in molecular ordering. By thermal annealing at about $110^{\circ}C$, an increase in current flow through the film by over 25% was observed. Molecularly-ordered 1-TNATA films played an important role in achieving higher luminance efficiency as well as higher power efficiency of the multi-layered organic EL devices in the present work. Electromagnetic field treatment during deposition was less effective compared to thermal annealing

Improving Conductivity of Metal Grids by Controlling Sintering Process (배선 함몰 전극의 배선 소결공정 최적화에 따른 전기적 특성 향상)

  • Ahn, Wonmin;Jung, Sunghoon;Kim, Do-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • 제48권4호
    • /
    • pp.158-162
    • /
    • 2015
  • To substitute indium tin oxide (ITO), many substituents have been studied such as metal nanowires, carbon based materials, 2D materials, and conducting polymers. These materials are not good enough to apply to an electrode because theses exhibit relatively high resistance. So metal grids are required as an additionalelectrode to improve the conductivities of substituents. The metal grids were printed by electrohydrodynamic printing system using Ag nanoparticle based ink. The Ag grids showed high uniformity and the line width was about $10{\mu}m$. The Ag nanoparticles are surrounded by dispersants such as unimolecular and polymer to prevent aggregation between Ag nanoparticles. The dispersants lead to low conductivity of Ag grids. Thus, the sintering process of Ag nanoparticles is strongly recommended to remove dispersants and connect each nanoparticles. For sintering process, the interface and microstructure of the Ag grid were controlled in 1.0 torr Ar atmosphere at aound $400^{\circ}C$ of temperature. From the sintering process, the uniformity of the Ag grid was improved and the defects on the Ag grids were reduced. As a result, the resistivity of Ag grid was greatly reduced up to $5.03({\pm}0.10){\times}10^{-6}{\Omega}{\cdot}cm$. The metal grids embedded substrates containing low pressure Ar sintered Ag grids showed 90.4% of transmittance in visible range with $0.43{\Omega}/{\square}$ of sheet resistance.

Electrochemical Characteristics of EDLCs with Selectivity Factors for the Organic Electrolyte (유기용매전해질에 따른 전기이중층캐패시터의 전기화학적 특성)

  • Lee, Sun-young;Ju, Jeh-Beak;Sohn, Tae-Won;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • 제8권1호
    • /
    • pp.1-5
    • /
    • 2005
  • Electric double layer capacitors(EDLCS) based on the charge stored at the interface between a hi팀 surface area carbon electrode and an organic electrolyte solution are widely used as a maintenance-free power source for IC memories and microcomputers. The achievement of the excellent performance of the capacitor requires an electrolyte solution which provides high conductivities over a wide temperature range and good electrochemical stabilities to allow the capacitor to be operated at high voltage. The electrochemical capacitor using a carbon material as electrodes and using an organic electrolyte with $1M-LiPF_6$ in PC-GBL-DEC(volume ratio 1:1:2) has specific capacitance of 64F/g.