• 제목/요약/키워드: Electrode Consumption

검색결과 196건 처리시간 0.136초

새로운 전극구조를 가진 ac-PDP의 전기 광학적 특성에 관한 연구 (II) (The study on the electrical and optical characteristics of a new structure for color ac plasma displays)

  • 고지성;이우근;이재영;박재문;조정수;박정후
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2230-2232
    • /
    • 1999
  • A new type ac plasma display panel(PDP) cells are designed and tested electrically and optically. One cell has the structure of sin discharge path shape and small electrode area. The other cells have the non-symmetric structure with a same electrode area. They show a higher luminous efficienccy and a lower power consumption about 25% improvement than the conventional standard ac PDP cells.

  • PDF

Characteristic of Facing Discharge Front plate Address Electrode Structure in AC PDP

  • Cho, Hyun-Min;Kim, Dong-Hwan;Song, In-Cheol;Kim, Yun-Gi;Ok, Jung-Woo;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.104-107
    • /
    • 2009
  • In order to improve discharge characteristics in AC PDP, we suggest FDFA (Facing Discharge Front plate Address Electrode) structure. By adopting both long facing discharge electrodes and address electrodes in front plate, the FDFA structure make it possible to gain a high luminance, low power consumption, and a high luminous efficiency.

  • PDF

Composite Ni-TiO2 nanotube arrays electrode for photo-assisted electrolysis

  • Pozio, Alfonso;Masci, Amedeo;Pasquali, Mauro
    • Advances in Energy Research
    • /
    • 제3권1호
    • /
    • pp.45-57
    • /
    • 2015
  • This article is addressed to define a new composite electrode constituted by porous nickel and an array of highly ordered $TiO_2$ nanotubes obtained by a previous galvanostatic anodization treatment in an ethylene glycol solution. The electrochemical performances of the composite anode were evaluated in a photo-electrolyser, which showed good solar conversion efficiency with respect to the UV irradiance together with a reduction of energy consumption. Such a combination of materials makes our system simple and able to work both in dark and under solar light exposure, thus opening new perspectives for industrial-scale applications.

Effect of Alloying Elements on the Electrochemical Characteristics of an Al Alloy Electrode for Al-air Batteries in 4 M NaOH solution

  • Choi, Yun-Il;Kalubarme, R.S.;Jang, Hee-Jin;Park, Chan-Jin
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.839-844
    • /
    • 2011
  • We examined the effects of alloying elements such as Fe, Ga, In, Sn, Mg, and Mn on the electrochemical characteristics of Al-based alloys for Al-air batteries by potentiodynamic polarization tests and electrochemical impedance spectroscopy. The corrosion potential of an Al anode was lowered by the addition of Ga and Sn, resulting in an increase in the cell voltage compared with a pure Al electrode. Fe was not beneficial to improve the electrochemical properties of the Al anode in that it caused a decrease in the cell voltage and reduced corrosion rate slightly. In, Mn, Sn, and Mg decreased the corrosion rate of the Al alloys, while Ga enhanced corrosion significantly and accelerated consumption of the anode.

Micromachined MoO3 Gas Sensor with Low Power Consumption of 0.5 Watt

  • Jang, Gun-Eik;Wu Q.H.;Liu C.C.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권4호
    • /
    • pp.173-176
    • /
    • 2005
  • A new $MoO_3$ based microsensor with low power consumption was presented. Typical size of sensor was 5mm in width and 8mm in length. As a sensitive electrode, $MoO_3$ was successfully fabricated by IC technology on pyrex glass of $250{\mu}m$ in thickness. After annealing at $550^{\circ}C$ for 3hrs, the film was fully crystallized and demonstrated as pure $MoO_3$ structure. The grain size of $MoO_3$ was plat like and typical size was about $1{\mu}m$. Based on the results of sensitivity measurement, $MoO_3$ microsensor shows especially high selectivity to $H_2$ reducing gas atmosphere. The applied heater power was lower than 0.5 Watt.

Full Size PDP Development with SDR Structure for Improved Luminance and Low Power Consumption

  • Yoo, Min-Sun;Yoon, Cha-Keun;Lee, Kwang-Sik;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.53-56
    • /
    • 2002
  • Samsung's newly developed high luminance efficiency 42" VGA plasma display panel is introduced. A new discharge cell structure, SDR (Segmented electrode in Delta color arrayed Rectangular subpixel) has been applied to a full size panel for the first time. In this paper, we describe how this new discharge cell structure for high efficiency is integrated to an energy saving plasma display with better picture quality.

  • PDF

OXYGEN CONCENTRATION IN THE CATHODE CHANNEL OF PEM FUEL CELL USING GAS CHROMATOGRAPH

  • Ha, T.H.;Kim, H.S.;Min, K.D.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.119-126
    • /
    • 2007
  • Because of the low temperature operation, proton exchange membrane (PEM) fuel cell has a water phase transition. Therefore, water management is an important operation issue in a PEM fuel cell because the liquid water in the fuel cell causes electrode flooding that can lower the cell performance under high current density conditions. In this study, in order to understand the reactant distributions in the cathode channels of the PEM fuel cell, an experimental technique that can measure the species concentrations of reactant gases by using gas chromatograph (GC) is applied for an operating PEM fuel cell. The oxygen distribution along the cathode flow channels of PEM fuel cell is mainly investigated with various operating conditions. Also, the relations between cathode flooding and oxygen concentrations and oxygen consumption pattern along the cathode channel configurations of the unit cell adopted for this study are discussed using GC measurement and visualization experiment of cathode flooding. It is found that the amount of oxygen consumption is very sensitive to various operating conditions of the fuel cell and was much affected by the flooding occurrence in cathode channels.

Operation optimization of auxiliary electric boiler system in HTR-PM nuclear power plant

  • Du, Xingxuan;Ma, Xiaolong;Liu, Junfeng;Wu, Shifa;Wang, Pengfei
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.2840-2851
    • /
    • 2022
  • Electric boilers (EBs) are the backup steam source for the auxiliary steam system of high-temperature gas-cooled reactor nuclear power plants. When the plant is in normal operations, the EB is always in hot standby status. However, the current hot standby operation strategy has problems of slow response, high power consumption, and long operation time. To solve these problems, this study focuses on the optimization of hot standby operations for the EB system. First, mathematical models of an electrode immersion EB and its accompanying deaerator were established. Then, a control simulation platform of the EB system was developed in MATLAB/Simulink implementing the established mathematical models and corresponding control systems. Finally, two optimization strategies for the EB hot standby operation were proposed, followed by dynamic simulations of the EB system transient from hot standby to normal operations. The results indicate that the proposed optimization strategies can significantly speed up the transient response of the EB system from hot standby to normal operations and reduce the power consumption in hot standby operations, improving the dynamic performance and economy of the system.

에어핸들링 유닛의 공기정화용 전기집진기의 방전극 비교 (Comparison of discharging electrodes for the electrostatic precipitator as an air filtration system in air handling units)

  • 신동호;우창규;김학준;김용진;한방우
    • 한국입자에어로졸학회지
    • /
    • 제13권1호
    • /
    • pp.11-16
    • /
    • 2017
  • Indoor air quality is of increasing concern because it is closely related human health. An air handling unit (AHU) can be used to control the indoor air quality related to particulate matters and $CO_2$ as well as air conditioning such as temperature and humidity of indoor air. An electrostatic precipitator has a high collection efficiency and low pressure drop, however, ozone can possibly generate from its chargers, which is one of drawbacks to apply it for indoor air control. Here we compared four charging electrodes such as a $50{\mu}m$ tungsten wire, a $100{\mu}m$ tungsten wire, a $16{\mu}m$-thickness Al foil and a carbon fabric comprised of $5-10{\mu}m$ fibers. The carbon fabric electrode showed a superior particle collection efficiency and a lower ozone generation at a given power consumption compared to tungsten wires of 50, $100{\mu}m$ and an Al foil electrode. This low ozone generating, micro-sized electrode can be applied to the electrostatic precipitator in AHU for indoor air control.

전기적 염소 발생 촉매활성을 위한 성형된 루테늄 산화물 나노로드와 나노시트 전극의 개발 (Development of templated RuO2 nanorod and nanosheet electrodes to improve the electrocatalytic activities for chlorine evolution)

  • 트란 루 레;김춘수;윤제용
    • 상하수도학회지
    • /
    • 제31권5호
    • /
    • pp.373-381
    • /
    • 2017
  • $RuO_2$ is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of $RuO_2$ electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, $RuO_2$ nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained $RuO_2$ nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The $RuO_2$ nanorod 80 nm in length and 20-30 nm in width and the $RuO_2$ nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated $RuO_2$ nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.