Browse > Article
http://dx.doi.org/10.12989/eri.2015.3.1.045

Composite Ni-TiO2 nanotube arrays electrode for photo-assisted electrolysis  

Pozio, Alfonso (ENEA, C.R. Casaccia, Via Anguillarese)
Masci, Amedeo (ENEA, C.R. Casaccia, Via Anguillarese)
Pasquali, Mauro (University of Rome "La Sapienza")
Publication Information
Advances in Energy Research / v.3, no.1, 2015 , pp. 45-57 More about this Journal
Abstract
This article is addressed to define a new composite electrode constituted by porous nickel and an array of highly ordered $TiO_2$ nanotubes obtained by a previous galvanostatic anodization treatment in an ethylene glycol solution. The electrochemical performances of the composite anode were evaluated in a photo-electrolyser, which showed good solar conversion efficiency with respect to the UV irradiance together with a reduction of energy consumption. Such a combination of materials makes our system simple and able to work both in dark and under solar light exposure, thus opening new perspectives for industrial-scale applications.
Keywords
nanotube; $TiO_2$; water photoelectrolysis; photoelectrode; OER;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mohapatra, S.K., Misra, M., Mahajan, V.K. and Raja, K.S. (2007), "Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting: application of $TiO_{2}$-xCx nanotubes as a photoanode and Pt/$TiO_{2}$ nanotubes as a cathode", J. Phys. Chem. C, 111(24), 8677-8685.   DOI
2 Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N. and Grimes, C.A. (2003), "Fabrication of tapered, conical-shaped titania nanotubes", J. Mater. Res., 18(11), 2588-2593.   DOI   ScienceOn
3 Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005a), "Enhanced photocleavage of water using titania nanotube arrays", Nano Lett., 5(1), 191-195.   DOI   ScienceOn
4 Mor, G.K., Varghese, O.K., Paulose, M. and Grimes, C.A. (2005b), "Transparent highly ordered $TiO_{2}$ nanotube arrays via anodization of titanium thin films", Adv. Funct. Mater., 15, 1291-1296.   DOI   ScienceOn
5 Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007), "High efficiency double heterojunction polymer photovoltaic cells using highly ordered $TiO_{2}$ nanotube arrays", Appl. Phys. Lett., 91, 152111.   DOI   ScienceOn
6 Mor, G.K., Basham, J., Paulose, M., Kim, S., Varghese, O.K., Vaish, A., Yoriya, S. and Grimes, C.A. (2010), "High-efficiency forster resonance energy transfer in solid-state dye sensitized solar cells", Nano Lett., 10(7), 2387-2394.   DOI   ScienceOn
7 Mura, F., Pozio, A., Masci, A. and Pasquali, M. (2009), "Effect of a galvanostatic treatment on the preparation of highly ordered $TiO_{2}$ nanotubes" Electrochim. Acta, 54, 3794-3798.   DOI   ScienceOn
8 Mura, F., Masci, A., Pasquali, M. and Pozio, A. (2010), "Stable $TiO_{2}$ nanotube arrays with high UV photoconversion efficiency", Electrochimica Acta, 55, 2246-2251.   DOI   ScienceOn
9 Oh, S.H., Finones, R.R., Daraio, C., Chen, L.H. and Jin, S. (2005), "Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes", Biomater., 26(24), 4938-4943.   DOI   ScienceOn
10 Oh, S.H. and Jin, S. (2006) "Titanium oxide nanotubes with controlled morphology for enhanced bone growth", Mater. Sci. Eng. C, 26, 1301-1306.   DOI   ScienceOn
11 Oh, H.J., Lee, J.H., Kim, Y.J., Suh, S.J., Lee, J.H. and Chi, C.S. (2008), "Surface characteristics of porous anodic $TiO_{2}$ layer for biomedical applications", Mater. Chem. Phys., 109, 10-14.   DOI   ScienceOn
12 Park, J.H., Kim, S. and Bard, A.J. (2006), "Novel carbon-doped $TiO_{2}$ nanotube arrays with high aspect ratios for efficient solar water splitting", Nano Lett., 6(1), 24-28.   DOI   ScienceOn
13 Peng, L., Mendelsohn, A.D., LaTempa, T.J., Yoriya, S., Grimes, C.A. and Desai, T.A. (2009), "Long-term small molecule and protein elution from $TiO_{2}$ nanotubes", Nano Lett., 9(5), 1932-1936.   DOI   ScienceOn
14 Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007a), "Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes", Biomater., 28(32), 4880-4888.   DOI   ScienceOn
15 Popat, K.C., Eltgroth, M., LaTempa, T.J., Grimes, C.A. and Desai, T.A. (2007b), "Titania nanotubes: a novel platform for drug-eluting coatings for medical implants?", Small, 3(11), 1878-1881.   DOI   ScienceOn
16 Pozio, A (2014), "Effect of low cobalt loading on $TiO_{2}$ nanotube arrays for water-splitting", Int. J. Electrochem., 2014, 1-7.
17 Pozio, A. (2015), "Effect of tantalum doping on $TiO_{2}$ nanotube arrays for water-splitting", Modern Res. Catal., 4, 1-12.   DOI
18 Sennik, E., Colak, Z., Kilinc, N. and Ozturk, Z.Z. (2010), "Synthesis of highly-ordered $TiO_{2}$ nanotubes for a hydrogen sensor", Int. J. Hydro. Energy, 35(9), 4420-4427.   DOI   ScienceOn
19 Raja, K.S., Misra, M., Mahajan, V.K., Gandhi, T., Pillai, P. and Mohapatra, S.K. (2006), "Photo-electrochemical hydrogen generation using band-gap modified nanotubular titanium oxide in solar light", J. Power Sour., 161(2), 1450-1457.   DOI   ScienceOn
20 Sakthivel, S. and Kisch, H. (2003), "Daylight photocatalysis by carbon-modified titanium dioxide", Angew. Chem. Int. Ed., 42, 4908-4911.   DOI   ScienceOn
21 Shankar, K., Tep, K.C., Mor, G.K. and Grimes, C.A. (2006), "An electrochemical strategy to incorporate nitrogen in nanostructured $TiO_{2}$ thin films: modification of bandgap and photoelectrochemical properties", J. Phys. D, Appl. Phys., 39, 2361-2366.   DOI   ScienceOn
22 Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007), "Highly-ordered $TiO_{2}$ nanotube arrays up to 220 ${\mu}m$ in length: use in water photoelectrolysis and dye-sensitized solar cells", Nanotech., 18, 065707.   DOI   ScienceOn
23 Shrestha, N.K., Yang, M., Nah, Y.C., Paramasivam, I. and Schmuki, P. (2010), "Self-organized $TiO_{2}$ nanotubes: visible light activation by Ni oxide nanoparticle decoration", Electrochem. Commun., 12, 254-257.   DOI   ScienceOn
24 Simmons, E.L. (1975), "Diffuse reflectance spectroscopy: a comparison of the theories", Appl. Opt., 14, 1380-1386.   DOI
25 Su, Y., Han, S., Zhang, X., Chen, X. and Lei, L. (2008) "Preparation and visible-light-driven photoelectrocatalytic properties of boron-doped $TiO_{2}$ nanotubes", Mater. Chem. Phys., 110(2/3), 239-246.   DOI   ScienceOn
26 Wang, Y., Feng, C., Jin, Z., Zhang, J., Yang, J. and Zhang, S. (2006), "A novel N-doped $TiO_{2}$ with high visible light photocatalytic activity", J. Molecul. Catal. A, Chem., 260, 1-3.   DOI   ScienceOn
27 Surendranath, Y., Kanan, M.W. and Nocera, D.G. (2010), "Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH", J. Am. Chem. Soc., 132, 16501-16509.   DOI   ScienceOn
28 Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A. (2003a), "Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure", Adv. Mater., 15(7-8), 624-627.   DOI   ScienceOn
29 Varghese, O.K., Gong, D., Paulose, M., Ong, K.G. and Grimes, C.A. (2003b), "Hydrogen sensing using titania nanotubes", Sens. Actuat. B, 93(1-3), 338-344.   DOI   ScienceOn
30 Wang, Y., Yang, H., Liu, Y., Wang, H., Shen, H., Yan, J. and Xu, H. (2010), "The use of Ti meshes with self-organized $TiO_{2}$ nanotubes as photoanodes of all-Ti dye-sensitized solar cells", Prog. Photovol. Res. Appl., 18, 285-290.
31 Wu, G., Nishikawa, T., Ohtani, B. and Chen, A. (2007), "Synthesis and characterization of carbon-doped $TiO_{2}$ nanostructures with enhanced visible light response", Chem. Mater., 19(18), 4530-4537.   DOI   ScienceOn
32 Xu, J., Yanhui, A., Chen, M. and Fu, D. (2010), "Photoelectrochemical property and photocatalytic activity of N-doped $TiO_{2}$ nanotube arrays", Appl. Surf. Sci., 256, 4397-4401.   DOI   ScienceOn
33 Yamada, Y., Matsuki, N., Ohmori, T., Mametsuka, H., Kondo, M. and Matsuda, A. (2003), "One chip photovoltaic water electrolysis device", Int. J. Hydro. Energy, 28, 1167-9.   DOI   ScienceOn
34 Yang, J., Wang, D., Han, H. and Li, C. (2013), "Roles of cocatalysts in photocatalysis and photoelectrocatalysis", Account. Chem. Res., 46(8), 1900-1909.   DOI   ScienceOn
35 Yoldas, B.E. and Partlow, D.P. (1985), "Formation of broad band antireflective coatings on fused silica for high power laser applications", Thin Solid. Film., 129, 1-14.   DOI   ScienceOn
36 Chen, Q., Xu, D., Wu, Z. and Liu, Z. (2008), "Free-standing $TiO_{2}$ nanotube arrays made by anodic oxidation and ultrasonic splitting", Nanotechnology, 19, 365708.   DOI   ScienceOn
37 Alivov, Y. and Fan, Z.Y. (2010), "Dye-sensitized solar cells using $TiO_{2}$ nanoparticles transformed from nanotube arrays", J. Mater. Sci., 45, 2902-2906.   DOI
38 Burgeth, G. and Kisch, H. (2002), "Photocatalytic and photoelectrochemical properties of titaniachloroplatinate (IV)", Coord. Chem. Rev., 230, 41-47.   DOI   ScienceOn
39 Cai, Q., Paulose, M., Varghese, O.K. and Grimes, C.A. (2005), "The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation", J. Mater. Res., 20(1), 230-236.   DOI   ScienceOn
40 Das, K., Bandyopadhyay, A. and Bose, S. (2008), "Biocompatibility and in situ growth of $TiO_{2}$ nanotubes on Ti using different electrolyte chemistry", J. Am. Ceram. Soc., 91(9), 2808-2814.   DOI   ScienceOn
41 Dinca, M., Surendranath, Y. and Nocera, D.G. (2010), "Nickel-borate oxygen-evolving catalyst that functions under benign conditions", PNAS, 107(23), 10337-10341.   DOI   ScienceOn
42 Dong, L., Ma, Y., Wang, Y., Tian, Y., Ye, G. and Jia, X. (2009), "Preparation and characterization of nitrogen-doped titania nanotubes", Mater. Lett., 63(18-19), 1598-1600.   DOI   ScienceOn
43 Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Frey, L. and Schmuki, P. (2006a), "Ion implantation and annealing for an efficient N-doping of $TiO_{2}$ nanotubes", Nano Lett., 6(5), 1080-1082.   DOI   ScienceOn
44 Dupuis, G. and Menu, M. (2006), "Quantitative characterization of pigment mixtures used in art by fibre-optics diffuse-reflectance spectroscopy", Appl. Phys. A, Mater. Sci. Proc., 83, 469.   DOI
45 Fang, D., Liu, S.Q., Chen, R.Y., Huang, K.L., Li, J.S., Yu, C., Qin, D.Y. and Xuebao, W.C. (2008), "Fabrication and characterization of highly ordered porous anodic titania on titanium substrate", J. Inorg. Mater., 23(4), 647-651.   DOI
46 Fujishima, A.K. and Honda, K. (1972), "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238, 37-38   DOI   ScienceOn
47 Ghicov, A., Macak, J.M., Tsuchiya, H., Kunze, J., Haeublein, V., Kleber, S. and Schmuki, P. (2006b), "$TiO_{2}$ nanotube layers: dose effects during nitrogen doping by ion implantation", Chem. Phys. Lett., 419, 426-429.   DOI   ScienceOn
48 Gong, A., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C. (2001), "Titanium oxide nanotube arrays prepared by anodic oxidation", J. Mater. Res., 16, 3331-3334   DOI   ScienceOn
49 Grimes, C.A., Varghese, O.K. and Ranjan, S. (2008), The Solar Hydrogen Generation by Water Photoelectrolysis, Springer, New York, NY, USA.
50 Hahn, R., Ghicov, A., Salonen, J., Lehto, V.P. and Schmuki, P. (2007), "Carbon doping of self-organized $TiO_{2}$ nanotube layers by thermal acetylene treatment", Nanotechnology, 18, 105604.   DOI   ScienceOn
51 Kamat, P., Flumiani, M. and Dawson, A. (2002), "Metal-metal and metal-semiconductor composite nanoclusters", Coll. Surf. A: Physicochem. Eng. Aspec., 202, 269-279.   DOI
52 Li, Q. and Shang, J.K. (2009), "Self-organized nitrogen and fluorine Co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance", Environ. Sci. Tech., 43(23), 8923-8929.   DOI   ScienceOn
53 Khaselev, O., Bansal, A. and Turner, J.A. (2001), "High-efficiency integrated multijunction photovoltaic/ electrolysis systems for hydrogen production", Int. J. Hydro. Energy, 26, 127-32.   DOI   ScienceOn
54 Kelly, N.A. and Gibson, T.L. (2006), "Design and characterization of a robust photoelectrochemical device to generate hydrogen using solarwater splitting", Int. J. Hydro. Energy, 31, 1658-1673.   DOI   ScienceOn
55 Kontos, A.G., Kontos, A.I., Tsoulkleris, D.S., Likodimos, V., Kunze, J., Schmuki, P. and Falaras, P. (2009) "Photo-induced effects on self-organized $TiO_{2}$ nanotube arrays: the influence of surface morphology", Nanotechnology, 20(4), 045603.   DOI   ScienceOn
56 Lin, H., Huang, C.P., Li, W., Ni, C., Ismat, S. and Tseng, Y. (2006), "Size dependency of nanocrystalline $TiO_{2}$ on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol", Appl. Catal. B: Environ., 68, 1-11.   DOI
57 Linsebigler, A.L., Lu, G. and Yates, J.T. (1995), "Photocatalysis on $TiO_{2}$ surfaces: principles, mechanisms, and selected results", Chem. Rev., 95, 735-758.   DOI   ScienceOn
58 Liu, Z. and Misra, M. (2010), "Bifacial dye-sensitized solar cells based on vertically oriented $TiO_{2}$ nanotube arrays", Nanotechnology, 21, 125703(1-4).   DOI   ScienceOn
59 Lu, N., Zhao, H., Li, J., Quan, X. and Chen, S. (2008), "Characterization of boron-doped $TiO_{2}$ nanotube arrays prepared by electrochemical method and its visible light activity", Separat. Purific. Tech., 62, 668-673.   DOI   ScienceOn