• Title/Summary/Keyword: Electroconductive

Search Result 70, Processing Time 0.028 seconds

Production of Polypyrrole Coated PVA Nanoweb Electroconductive Textiles for Application to ECG Electrode (심전도용 전극으로의 적용을 위한 폴리피롤 코팅 PVA 나노웹 전기전도성 텍스타일의 제조)

  • Kim, Jae-Hyun;Yang, Hyuk-Joo;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.363-369
    • /
    • 2019
  • This study developed electroconductive textiles by coating polypyrrole to PET nonwoven-based Polyvinyl Alcohol (PVA) nanoweb made by electrospinning and applying the developed electrotextiles as ECG Electrodes. To find the optimum coating conditions for high electrical conductivity, the ratios of 2.6-Naphthalenedisulfonic acid with Disodium Salt (NDS) vs Ammonium Persulfate (APS) as an oxidant and a doping agent in the solution were changed from 3:7 to 7:3; the immersion time of the specimen in the solution was 1 hour. PVA nanowebs coated with polypyrrole under various conditions were filmed with FE-SEM. FT-IR analysis was also performed to examine the presence of polypyrrole nanoparticles in the PVA nanoweb. The electrical resistance of the treated specimens were measured with a Multimeter. Consequently, the PVA Nano Web was undamaged even after heat treatment that allowed for coating. Uniform polypyrrole nanoparticles then formed on the surface of the PVA nanoweb after coating. The measured electrical resistance was shown to be at least $12K{\Omega}/{\Box }$ from a maximum of $3,456K{\Omega}/{\Box }$. The proper amount of NDS content had a positive effect on the conductivity improvement of electroconductive textiles; in addition, the highest electrical conductivity was achieved with a ratio of 3:7 between NDS and APS.

Estimation of the Properties for the $SiC-TiB_2$ Electroconductive Ceramic Composites by YAG and Porosity (YAG와 기공에 의한 $SiC-TiB_2$ 전도성세라믹 복합체의 특성 평가)

  • Sin, Yong-Deok;Lee, Dong-Yun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.11
    • /
    • pp.544-549
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and pressureless annealed SiC-39vo1.%TiB$_2$electroconductive ceramic composites were investigated as functions of the liquid additives of $Al_2O_3+Y_2O_3$ and the sintering temperature. The result of phase analysis for the SiC-39vo1.%TiB$_2$ composites by XRD revealed $\alpha -SiC(6H),\; TiB_2,\; and YAG(Al_5Y_3O_{12})$ crystal phase. The relative density of SiC-39vo1.% $TiB_2$ composites was increased with increased $Al_2O_3+Y_2O_3$ contents. The fracture toughness showed the highest value of $7.8 MPa.m_{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$additives at $1750^{\circk}C$. The electrical resistivity of the SiC-39vo1.%$TiB_2$composites was all positive temperature coefficient resistance(PTCR) in the temperature range of $25S^{\circ}C \;to\; 700^{\circ}C$.

  • PDF

Properties of Pressureless Sintered SiC-$TiB_2$ Electroconductive Composites (무가압 소결법에 의한 SiC-$TiB_2$계 도전성 복합체의 특성)

  • Park, Mi-Lim;Ju, Jin-Young;Shin, Yong-Deok;So, Byung-Moon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.118-122
    • /
    • 2001
  • The ${\beta}-SiC+TiB_2$ ceramic electroconductive composites were pressureless-sintered and annealed by adding 12wt% $Al_2O_3+Y_2O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density is over 78.83% of the theoretical density and increased with increasing sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), $TiB_2$, $Al_5Y_2O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 140 MPa for composites sintered at $1900^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest of 4.07 GPa at $1900^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 4.07 $MPa{\cdot}m^{1/2}$ for composites at $1900^{\circ}C$. The electrical resistivity was measured by the Pauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).

  • PDF

Electroconductive Graphene-Combined Polycaprolactone Electrospun Films for Biological Applications (생체적 적용을 위한 전기전도성을 갖는 그래핀과 폴리카프로락톤 복합물질 전기방사 섬유형 필름)

  • Oh, Jun-Sung;Lee, Eun-Jung
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.278-285
    • /
    • 2021
  • This study produces electroconductive polycaprolactone (PCL)-based film with different amounts of graphene (G) through electrospinning, and the characteristics of the produced G/PCL composites are investigated. The G/PCL results are analyzed by comparing them with those obtained using pure PCL electrospun film as a control. The morphology of electrospun material is analyzed through scanning electron microscopy and transmission electron microscopy. Mechanical and electrical properties are also evaluated. Composites containing 1 % graphene have the highest elongation rate, and 5 % samples have the highest strength and elasticity. Graphene contents > 25 % show electro-conductivity, which level improves with increase of graphene content. Biological characteristics of G/PCL composites are assessed through behavioral analysis of neural cell attachment and proliferation. Cell experiments reveal that compositions < 50 % show slightly reduced cell viability. Moreover, graphene combinations facilitated cell proliferation compared to pure PCL. These results confirm that a 25 % G/PCL composition is best for application to systems that introduce external stimuli such as electric fields and electrodes to lead to synergistic efficiency of tissue regeneration.

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Accelerated Aging Characteristics of Electroconductive Paper (탄소섬유를 첨가한 전도성 종이의 강제열화 특성)

  • Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.24-30
    • /
    • 2011
  • The accelerated aging characteristics of electroconductive papers manufactured with a mixture of carbon fiber were investigated by heating in dry oven. By accelerated aging time, the tensile strength, tensile stretch of the papers were decreased more slowly with increase of carbon fiber content, but the electrical conductivity was more rapidly decreased in case of high carbon fiber content. The weight loss of papers by thermal analysis were reduced as increasing the carbon fiber content. These results were indicated that the electrical conductivity of carbon fiber was diminished easily by heat aging, but thermal characteristic of carbon fiber was much better than that of wood pulp.

Electrical discharge Machining of SiC-ZrB$_2$Electroconductive Ceramic Composities (SiC-ZrB$_2$계 도전성 복합 세라믹스의 방전가공)

  • 신용덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.320-325
    • /
    • 1996
  • The influences of ZrB$_2$additives to the SiC and pulse width on electrical discharge machining of SiC-ZrB$_2$electroconductive ceramic composites were investigated. IIigher-flexural strength materials show a trend toward smaller crater volumes, leaving a soother surface; the average surface roughness of the SiC-ZrB$_2$15 Vol.% Composite with the flexural strength of 375㎫ was 3.2${\mu}{\textrm}{m}$,whereas the SiC-ZrB$_2$30 Vol.% composite of 457㎫ was 1.35${\mu}{\textrm}{m}$. In the SEM micrographs of the fracture surface of SiC-ZrB$_2$composites, the SiC-ZrB$_2$two phaes are distinct; the white phase is the ZrB$_2$. In the micrograph of the EDM surface, however, these phases are no longer distinct because of thicker recast layer of resolidified-melt-formation droplets present.

  • PDF

Characteristics of Electroconductive Paper Manufactured with Carbon Fiber (탄소섬유를 이용한 전도성 종이의 제조 및 특성)

  • Kim, Bong-Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.3
    • /
    • pp.29-34
    • /
    • 2009
  • Electroconductive papers were manufactured as handsheet by mixing carbon fiber in LBKP and BCTMP. The electrical conductivity of the paper was improved by increasing carbon fiber content and basis weight. The porosity was increased and tensile strength was decreased by the addition of carbon fiber. Electrical conductivity of carbon fiber and BCTMP-based sheet was much better than those of carbon fiber and LBKP-based one. This result indicated that the electrical conductivity of paper can be affected by the kinds of raw material of wood fibers used.