• Title/Summary/Keyword: Electrochromic properties

Search Result 78, Processing Time 0.019 seconds

The Deposition and Characterization of Electrochromic Tungsten Oxide Thin Films (산화텅스텐 박막의 제조 및 전기변색 특성)

  • 하승호;이진민;박승희;조봉희;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.120-123
    • /
    • 1993
  • This paper describes the deposition and characteristics of electrochromic tungsten oxide thin films for electrochromic smart windows. Tungsten Oxide thin films(WO$_3$) are deposited by thermal evaporation techniques. By varying deposition parameters, WO$_3$ thin films exhibit different optical properties. The electrochromic devices are consist of ITO glass/ WO$_3$ thin films/ LiClO$_4$-propylene carbonate electrolyte/ counter electrode. The electrochromic properties of tungsten oxide thin films with different deposition condition ale investigated.

  • PDF

The Effect of Sputtering Conditions on the Electrochromic Properties of Titanium Oxide Thin Films (스퍼터링 조건이 티탄산화물박막의 전기적 착색 특성에 미치는 영향)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.55-61
    • /
    • 2006
  • Titanium oxide ($TiO_2$) films are deposited on the indium tin oxide (ITO) substrate in an $Ar/O_2$ atmosphere by using reactive RF (Radio Frequency) magnetron sputtering technique, and Electrochromic properties and durability of $TiO_2$ films deposited at different preparation conditions are investigated by using UV-VIS spectrophotometer and cyclic voltammetry Li+ interalation/deintercalation in $TiO_2$ films shows that the electrochromic properties and durability of as-deposited films strongly depend on gas pressure $TiO_2$ films formed in our sputtering conditions are found to remain transparent, irrespective of their Li+ ion contents. The optimum sputtering conditions for film as passive counter electrode in electrochromic devices are working pressure of $1.0\;{\times}\;10^{-2}\;torr$ and oxygen flow raes of $10{\sim}15\;sccm$, respectively.

Study of electrochromic cells in $WO_{3}$/$MoO_{3}$ double-layer structure ($WO_{3}$$ MoO_{3}$ 이중층을 가진 전기변색 소자에 관한 연구)

  • 임석범;임동규;백희원;김영호;조봉희;유인종;변문기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.515-518
    • /
    • 2000
  • The electrochromic properties of $WO_{3}$/$MoO_{3}$ and $MoO_{3}$/$WO_{3}$ double-layers have been systemically studied. The double-layers were made by a e-beam evaporation method and investigated by studying optical modulation, transmittance, and cyclic voltammetry. The devices exhibit good optical properties with wavelength range of 400 to 1100 nm(visible and infrared) during coloration as a function of lithium ion charge injection. It has shown that the double-layer electrochromic thin films are improved the electrochromic properties, but the electrochemical properties are less stable.

  • PDF

Annealing Effects of The Electrochromic $MoO_3$ Thin Films (전기변색 $MoO_3$ 박막의 열처리 효과)

  • 임동규;이진민;조봉희;김동진;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.505-508
    • /
    • 1999
  • The effect of the heat treatment on electrochromic properties of $MoO_3$ thin films is investigated by studing optical modulation, optical density, response time, and cyclic voltammetry. From the results of XRD analysis, heat-treated at $450^{\circ}C$ in air for 1 hour $MoO_3$ thin films are found to be crystalline while as-deposited film and heat-treated at low temperature (${\leq}300^{\circ}C$) are amorphous. The electrochrornic devices using as-deposited $MoO_3$ films exhibits good electrochromic properties compare to those using the heat treated $MoO_3$ films. It has shown that the heat-treatment affected the stability and the electrochromic properties of $MoO_3$ films.

  • PDF

Effects of Heat Treatment and Viologen Incorporation on Electrochromic Properties of TiO2 Nanotubes (열처리 및 바이올로젠 도입에 따른 TiO2 나노튜브의 전기변색 특성)

  • Cha, Hyeongcheol;Nah, Yoon-Chae
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.102-107
    • /
    • 2016
  • We demonstrate the electrochromic properties of $TiO_2$ nanotubes prepared by an anodization process and investigate the effects of heat treatment and viologen incorporation on them. The morphology and crystal structure of anodized $TiO_2$ nanotubes are investigated by scanning electron microscopy and X-ray diffraction. As-formed $TiO_2$ nanotubes have straight tubular layers with an amorphous structure. As the annealing temperature increases, the anodized $TiO_2$ nanotubes are converted to the anatase and rutile phases with some cracks on the tube surface and irregular morphology. Electrochemical results reveal that amorphous $TiO_2$ nanotubes annealed at $150^{\circ}C$ have the largest oxidation/reduction current, which leads to the best electrochromic performance during the coloring/bleaching process. Viologen-anchored $TiO_2$ nanotubes show superior electrochromic properties compared to pristine $TiO_2$ nanotubes, which indicates that the incorporation of a viologen can be an effective way to enhance the electrochromic properties of $TiO_2$ nanotubes.

All Solid State Electrochromic (전 고체형 일렉트로크로믹 소자)

  • 채종우;조봉희;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.295-298
    • /
    • 1996
  • In this study, we have fabricated all solid state electrochromic devices using WO$_3$ film as the working electrode, V$_2$O$\_$5/ film as the counter electrode and PEO-LiClO$_4$-PC film as the solid electrolyte. The WO$_3$ thin films for working electrode and V$_2$O$\_$5/ thin films for counter electrode were deposited onto ITO glass by vacuum evaporation and were shown good electrochromic and state properties after 1x10$\^$5/ cycles. PEO-LiClO$_4$-PC polymer electrolyte can easily be formed into thin films, do not absorb in the visible region of the light. Therefore, such electrolyte have electrochromic properties suitable for large-scale all solid-state electrochromic devices. All solid-staeelectrochromic devices fabricated in this polymer electrolyte have optical modulation of 20%∼30% at 1.5 V.

  • PDF

Recent Progress of Developing Next-Generation Electrochromic Windows from Plasmonic Metal Oxide Nanocrystals (플라즈몬 금속 산화물 나노입자를 활용한 차세대 전기변색 소자 개발 동향)

  • Janghan Na;Sungbin Kim;Sungyeon Heo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Direct use of sunlight through the glass windows is an efficient way to reduce the energy consumption related to the heating, cooling, and lighting. Introduction of near-infrared modulating properties through colloidal doped metal oxide nanocrystals into the classical electrochromic materials accelerates the development of next-generation electrochromic devices. There has been a steady enhancement in the performance of electrochromic devices, necessitating a review of the recent progress in next-generation electrochromic devices employing doped metal oxide nanocrystals. This review provides an overview of the current developments in next-generation electrochromic smart windows utilizing colloidal doped metal oxide nanocrystals, with a focus on the key factors for achieving these advanced windows. Colloidal doped metal oxide nanocrystals are a crucial component in realizing and bringing to market the next generation of electrochromic windows, though further research and development are still required in this regard.

The Vacuum Pressure Effects on Electrochromic Properties of Tungsten Oxide Thin Films by Electron Beam Evaporation (전자비임에 의해 제작된 WO$_3$ 박막의 전기적착색 특성에 대한 진공도의 효과)

  • 이길동
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.41-44
    • /
    • 1995
  • The electrochromic WO$_3$ thin films were prepared by using an electron - beam evaporation technique. The influence of the electron - beam evaporation conditions. especially the vacuum pressure, and resistance of ITO substrate on the structural and electrochromic properties of the investigated film was presented. This films showed electrochromic behavior in an aqueous electrolyte of 1 M H$_2$SO$_4$. Among these WO$_3$ thin films, films prepared at a vacuum pressure of 10$^{-4}$ mbar were found to be most stable in terms of cycling durability. The chemical stability of film against dissolution in the aqueous solution was also shown to depend on the quantity of water in the film.

  • PDF

Electrical and Optical Properties of Electrochromic Window with Both Lithium and Proton Conducting Polymer Electrolytic Media (리튬 및 프로톤 전도성 고분자전해질을 사용하여 제작한 Electrochromic 창의 전기 및 광학적 특성)

  • 박성용;이철환;김형선;조원일;조병원;윤경석;안춘호;우경근
    • Journal of Surface Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.46-54
    • /
    • 1995
  • An electrochromic(EC) cell was constructed using $WO_3$ as a electrochromic material and NiO as a counter electrode, deposited onto ITO-coated glass by the implementation of electron beam evaporation. The electrolytic media were both lithium and proton conducting polymers such as poly-acrylonitrile(PAN)-$LiClO_4$, poly-ethylene oxide(PEO)-$LiClO_4$, poly-vinyl butyral(PVB)-LiCl and PVB-H$_3$$PO_4$. Potentiodynamic cycling of the cells using PAN-$LiClO_4$, or PVB-$H_3$$PO_4$ electrolyte yielded a transmission variation of more than 40% at the wavelength of 632.8 nm within less than 10 sec response time at room temperature. These results indicate that these electrolytes, transparent in gel type, are premising for the application in large area electrochromic windows.

  • PDF

Electrodeposited WO3 films and their application in electrochromic boards

  • Kim, Dae-Hyeon;Kang, Kwang-Mo;Nah, Yoon-Chae
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.4
    • /
    • pp.187-195
    • /
    • 2022
  • WO3 thin films were synthesized by electrodeposition, and their electrochromic properties were investigated. The application of static voltage produced WO3 films with a smooth, compact surface morphology, and the film thickness linearly increased with the application time. The thicker film showed a strong color contrast but a slow color-switching speed. High-temperature heat treatment exceeding 300 ℃ induced a phase transformation from an amorphous to a monoclinic structure and resulted in degraded electrochromic performance. Furthermore, the optimized WO3 thin films demonstrated their potential application as electrochromic boards for writing and erasing letters using a simple modified 3D printer in a rapid, accurate process