Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.4.187

Electrodeposited WO3 films and their application in electrochromic boards  

Kim, Dae-Hyeon (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education (KOREATECH))
Kang, Kwang-Mo (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education (KOREATECH))
Nah, Yoon-Chae (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education (KOREATECH))
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.4, 2022 , pp. 187-195 More about this Journal
Abstract
WO3 thin films were synthesized by electrodeposition, and their electrochromic properties were investigated. The application of static voltage produced WO3 films with a smooth, compact surface morphology, and the film thickness linearly increased with the application time. The thicker film showed a strong color contrast but a slow color-switching speed. High-temperature heat treatment exceeding 300 ℃ induced a phase transformation from an amorphous to a monoclinic structure and resulted in degraded electrochromic performance. Furthermore, the optimized WO3 thin films demonstrated their potential application as electrochromic boards for writing and erasing letters using a simple modified 3D printer in a rapid, accurate process
Keywords
Electrochromism; Electrodeposition; $WO_3$; 3D printer; electrochromic boards;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 S. H. Park, H. J. Mo, J. K. Lim, S. G. Kim, J. H. Choi, S. H. Lee, S. H. Jang, K. H. Cha, Y. C. Nah, High-contrast electrochromism of porous tungsten oxide thin films prepared by electrodeposition, J. Korean Powder Metall. Inst., 25 (2018) 7-11.   DOI
2 C. Hu, Q. H. Qin, Advances in fused deposition modeling of discontinuous fiber/polymer composites, Curr. Opin. Solid State Mater Sci., 24 (2020) 100867.
3 C. A. Milroy, S. Jang, T. Fujimori, A. Dodabalapur, A. Manthiram, Inkjet-printed lithium-sulfur microcathodes for all-printed, integrated nanomanufacturing, Small, 13 (2017) 1603786.
4 H. Simchi, B. E. McCandless, T. Meng, W. N. Shafarman, Structural, optical, and surface properties of WO3 thin films for solar cells, J. Alloys Compd., 617 (2014) 609-615.   DOI
5 K. M. Kang, J. H. Jeong, G. I. Lee, J. M. Im, H. J. Cheon, D. H. Kim, Y. C. Nah, Photocatalytic properties of WO3 thin films prepared by electrodeposition method, J. Korean Powder Metall. Inst., 26 (2019) 40-44.   DOI
6 V. H. V. Quy, I. R. Jo, S. H. Kang, K. S. Ahn, Amorphous-crystalline dual phase WO3 synthesized by pulsed-voltage electrodeposition and its application to electrochromic devices, J. Ind. Eng. Chem., 94 (2021) 264-271.   DOI
7 N. Shahrubudin, T. C. Lee, R. Ramlan, An overview on 3D printing technology: Technological, materials, and applications, Procedia Manuf., 35 (2019) 1286-1296.   DOI
8 T. H. Duong, N. I. Jaksic, J. L. DePalma, B. Ansaf, D. M. Daniel, J. Armijo, M. Galaviz, G-code visualization and editing program for inexpensive metal 3D printing, Procedia Manufacturing, 17 (2018) 22-28.   DOI
9 D. Vak, K. Hwang, A. Faulks, Y. S. Jung, N. Clark, D. Y. Kim, G. J. Wilson, S. E. Watkins, 3D printer based slot-die coater as a lab-to-fab translation tool for solution-processed solar cells, Adv. Energy Mater., 5 (2015) 1401539.
10 A. Lind, O. Vistad, N. F. Sunding, K. A. Andeassen, J. H. Cavka, C. A. Grande, Multi-purpose structured catalysts designed and manufactured by 3D printing, Mater. Des., 187 (2020) 108377.
11 W. L. Kwong, P. Koshy, J. N. Hart, W. Xu, C. C. Sorrell, Critical role of {002} preferred orientation on electronic band structure of electrodeposited monoclinic WO3 thin films, Sustain. Energy Fuels, 10 (2018) 2224-2236.
12 M. Musiani, Electrodeposition of composites: an expanding subject in electrochemical materials science, Electrochim. Acta, 45 (2020) 3397-3402.   DOI
13 H. Fang, P. Zheng, R. Ma, C. Xu, G. Yang, Q. Wang, H. Wang, Multifunctional hydrogel enables extremely simplified electrochromic devices for smart windows and ionic writing boards, Mater. Horiz., 5 (2018) 1000-1007.   DOI
14 T. H. Kim, S. H. Park, D. H. Kim, Y. C. Nah, H. K. Kim, Roll-to-roll sputtered ITO/Ag/ITO multilayers for highly transparent and flexible electrochromic applications, Sol. Energy Mater. Sol. Cells, 160 (2017) 203-210.   DOI
15 X. Hou, Z. Wang, J. Pan, F. Yan, Ionic liquid electrolyte-based switchable mirror with fast response and improved durability, ACS Appl. Mater. Interfaces, 13 (2021) 37339-37349.   DOI
16 S. K. Deb, A novel electrophotographic system, Appl. Opt., 8 (1969) 192-195.   DOI
17 A. Chaudhary, D. K. Pathak, T. Ghosh, S. Kandpal, M. Tanwar, C. Rani, R. Kumar, Prussian blue-cobalt oxide double layer for efficient all-inorganic multicolor electrochromic device, ACS Appl. Eletron. Mater., 2 (2020) 1768-1773.   DOI
18 Y. J. Park, K. M. Kang, J. H. Kang, S. H. Han, H. S. Jang, J. Y. Lee, T. S. Yoon, Y. C. Nah, D. H. Kim, Enhancement of electrochromic response and cyclic durability of WO3 thin films by stacking Nb2O5 layers, appl. Surf. Sci., 582 (2022) 152431.
19 C. Eyovge, C. S. Deenen, F. R. Zepeda, S. Bartling, Y. Smirnov, M. M. Masis, A. S. Arce, H. Gardeniers, Color tuning of electrochromic TiO2 nanofibrous layers loaded with metal and metal oxide nanoparticles for smart colored windows, ACS Appl. Nano Mater., 4 (2021) 8600-8610.   DOI
20 D. K. Pathak, A. Chaudhary, M. Tanwar, U. K. Goutam, R. Kumar, Nano-cobalt oxide/viologen hybrid solid state device: Electrochromism beyond chemical cell, Appl. Phys. Lett. 116 (2020) 141901.
21 S. Macher, M. Schott, M. Dontigny, A. Guerfi, K. Zaghib, U. Posset, P. Lobmann, Large-area electrochromic devices on flexible polymer substrates with high optical contrast and enhanced cycling stability, Adv. Mater. Technol., 6 (2021) 2000836.
22 M. Li, D. Weng, Y. Wei, J. Zheng, C. Xu, Durability-reinforced electrochromic device based on surface-confined Ti-doped V2O5 and solution-phase viologen, Electrochim. Acta., 248 (2017) 206-214.   DOI
23 H. Gong, K. Zhou, Q. Zhang, J. Liu, H. Wang, H. Yan, A self-patterning multicolor electrochromic device driven by horizontal redistribution of ions, Sol. Energy Mater. Sol. Cells, 215 (2020) 110642.
24 S. Macher, M. Schott, M. Dontigny, A. Guerfi, K. Zaghib, U. Posset, P. Lobmann, Large-area electrochromic devices on flexible polymer substrates with high optical contrast and enhanced cycling stability, Adv. Mater. Technol., 6 (2021) 2000836.
25 H. Yang, J. H. Yu, H. J. Seo, R. H. Jeong, J. H. Boo, Improved electrochromic properties of nanoporous NiO film by NiO flake with thickness controlled by aluminum, Appl. Surf. Sci., 461 (2018) 88-92.   DOI