• Title/Summary/Keyword: Electrochemical process

Search Result 1,272, Processing Time 0.025 seconds

Electrochemical oxidation of sodium dodecylbenzenesulfonate in Pt anodes with Y2O3 particles

  • Jung-Hoon Choi;Byeonggwan Lee;Ki-Rak Lee;Hyun Woo Kang;Hyeon Jin Eom;Seong-Sik Shin;Ga-Yeong Kim;Geun-Il Park;Hwan-Seo Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4441-4448
    • /
    • 2022
  • The electrochemical oxidation process has been widely studied in the field of wastewater treatment for the decomposition of organic materials through oxidation using ·OH generated on the anode. Pt anode electrodes with high durability and long-term operability have a low oxygen evolution potential, making them unsuitable for electrochemical oxidation processes. Therefore, to apply Pt electrodes that are suitable for long-term operation and large-scale processes, it is necessary to develop a new method for improving the decomposition rate of organic materials. This study introduces a method to improve the decomposition rate of organic materials when using a Pt anode electrode in the electrochemical oxidation process for the treatment of organic decontamination liquid waste. Electrochemical decomposition tests were performed using sodium dodecylbenzenesulfonate (SDBS) as a representative organic material and a Pt mesh as the anode electrode. Y2O3 particles were introduced into the electrolytic cell to improve the decomposition rate. The decomposition rate significantly improved from 21% to 99%, and the current efficiency also improved. These results can be applied to the electrochemical oxidation process without additional system modification to enhance the decomposition rate and current efficiency.

Comparative Study and Electrochemical Properties of LiFePO4F Synthesized by Different Routes

  • Huang, Bin;Liu, Suqin;Li, Hongliang;Zhuang, Shuxin;Fang, Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2315-2319
    • /
    • 2012
  • To improve the performance of $LiFePO_4F$, a novel sol-gel process is developed. For comparison, ceramic process is also implemented. From X-ray diffraction results we know that each sample adopts a triclinic $P{\bar{1}}$ space group, and they are isostructural with amblygonite and tavorite. The scanning electron microscope images show that the homogeneous grains with the dimension of 300-500 nm is obtained by the sol-gel process; meanwhile the sample particles obtained by ceramic process are as big as 1000-3000 nm. By galvanostatic tests and at electrochemical impedance spectroscopy method, the sample obtained by sol-gel process presents better electrochemical properties than the one obtained by ceramic process.

Characterization of Electrolyte in Electrochemical Mechanical Planarization (Cu ECMP 공정에서의 전해질 특성평가)

  • Kwon, Tae-Young;Kim, In-Kwon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.57-58
    • /
    • 2006
  • Chemical-mechanical planarization (CMP) of Cu has used currently in semiconductor process for multilevel metallization system. This process requires the application of a considerable down-pressure to the sample in the polishing, because porous low-k films used in the Cu-multilevel interconnects of 65nm technology node are often damaged by mechanical process. Also, it make possible to reduce scratches and contaminations of wafer. Electrochemical mechanical planarization (ECMP) is an emerging extension of CMP. In this study, the electrochemical mechanical polisher was manufactured. And the static and dynamic potentiodynamic curve of Cu were measured in KOH based electrolyte and then the suitable potential was found.

  • PDF

Influence of Carbon Fiber on Corrosion Behavior of Carbon Steel in Simulated Concrete Pore Solutions

  • Tang, Yuming;Dun, Yuchao;Zhang, Guodong;Zhao, Xuhui;Zuo, Yu
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.175-182
    • /
    • 2017
  • Galvanic current measurement, polarization curves, electrochemical impedance spectroscopy and weight loss test were used to study the corrosion behavior of carbon steel before and after carbon fibers coupling to the carbon steel in simulated concrete pore solutions, and the film composition on the steel surface was analyzed using XPS method. The results indicate that passive film on steel surface had excellent protective property in pore solutions with different pH values (13.3, 12.5 and 11.6). After coupling with carbon fibers (the area ratio of carbon steel to carbon fiber was 12.31), charge transfer resistance $R_{ct}$ of the steel surface decreased and the $Fe^{3+}/Fe^{2+}$ value in passive film decreased. As a result, stability of the film decreased and the corrosion rate of steel increased. Decreasing of the area ratio of steel to carbon fiber from 12.3 to 6.15 resulted in the decrease in $R_{ct}$ and the increase in corrosion rate. Especially in the pore solution with pH 11.6, the coupling leads the carbon steel to corrode easily.

Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution

  • Jang, I.J.;Kim, K.T.;Yoo, Y.R.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.163-173
    • /
    • 2020
  • Cavitation corrosion in many industrial plants has recently become a serious issue. Cavitation corrosion has generally been investigated using a vibratory method based on ASTM G32 standard, and the test can be divided into direct cavitation and indirect cavitation. Cavitation corrosion test uses the vibration frequency of the horn of 20 kHz with constant peak-to-peak displacement amplitude. In this work, the peak-to-peak amplitude was controlled from 15 ㎛ to 85 ㎛, and electrochemical measurements were obtained during indirect cavitation. The relationship between cavitation corrosion rate and electrochemical properties was discussed. Corrosion steps of carbon steel at the initial stage under cavitation condition in 3.5 % NaCl can be proposed. When the cavitation strength is relatively low, corrosion of the steel is more affected by the electrochemical process than by the mechanical process; but when the cavitation strength is relatively high, corrosion of the steel is affected more by the mechanical process than by the electrochemical process. This work confirmed that the critical ultrasonic amplitude of 0.42 %C carbon steel is 53.8 ㎛, and when the amplitude is less than 53.8 ㎛, the corrosion effect during the cavitation corrosion process is higher than the mechanical effect.

Electrochemically Fabricated Alloys and Semiconductors Containing Indium

  • Chung, Yonghwa;Lee, Chi-Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.95-115
    • /
    • 2012
  • Although indium (In) is not an abundant element, the use of indium is expected to grow, especially as applied to copper-indium-(gallium)-selenide (CI(G)S) solar cells. In future when CIGS solar cells will be used extensively, the available amount of indium could be a limiting factor, unless a synthetic technique of efficiently utilizing the element is developed. Current vacuum techniques inherently produce a significant loss of In during the synthetic process, while electrodeposition exploits nearly 100% of the In, with little loss of the material. Thus, an electrochemical process will be the method of choice to produce alloys of In once the proper conditions are designed. In this review, we examine the electrochemical processes of electrodeposition in the synthesis of indium alloys. We focus on the conditions under which alloys are electrodeposited and on the factors that can affect the composition or properties of alloys. The knowledge is to facilitate the development of electrochemical means of efficiently using this relatively rare element to synthesize valuable materials, for applications such as solar cells and light-emitting devices.

Micro Electrochemical Machining Characteristics and Shape Memory Effect in Ni-Ti SMA (Ni-Ti SMA의 미세 전해가공특성과 형상기억효과)

  • 김동환;박규열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.43-49
    • /
    • 2003
  • In this study, micro electrochemical machining method was introduced for accomplishment the fabrication technology of functional parts and smart structures using the Ni-Ti shape memory alloy. From the experimental result, the micro part which has very fine surface could be achieved by use of micro electrochemical process with point electrode method. Concretely, the optimal performance of micro electrochemical process in Ni-Ti SMA was obtained at the condition of approximately 100% of current efficiency and high frequency pulse current. That is, much finer surface integrity and shape memory effect can be obtained at the same condition mentioned above.

Electrochemical Nitrogen Reduction Reaction to Ammonia Production at Ambient Condition (상온 상압 조건에서 전기화학적 질소환원반응을 통한 암모니아 생산 연구 동향)

  • Lee, Dong-Kyu;Sim, Uk
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The reduction of nitrogen to produce ammonia has been attracting much attention as a renewable energy technology. Ammonia is the basis for many fertilizers and is also considered an energy carrier that can power internal combustion engines, diesel engines, gas turbines, and fuel cells. Traditionally, ammonia has been produced through the Haber-Bosch process, in which atmospheric nitrogen combines with hydrogen at high temperature ($350-550^{\circ}C$) and high pressure (150-300 bar). This process consumes 1-2% of current global energy production and relies on fossil fuels as an energy source. Reducing the energy input required for this process will reduce $CO_2$ emissions and the corresponding environmental impact. For this reason, developing electrochemical ammonia-production methods under ambient temperature and pressure conditions should significantly reduce the energy input required to produce ammonia. In this review, we introduce the electrochemical nitrogen reduction reaction at ambient condition. Numerical studies on the electrochemical nitrogen reduction mechanism have been carried out through the computation of density function theory. Electrodes such as nanowires and porous electrodes have been also actively studied for further participation in electrochemical reactions.

Electrochemical Deburring System by the Electroplated CBN Wheel (입방정질화붕소입자 전착지석에 의한 전해디버링 시스템)

  • Choe, In-Hyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.430-438
    • /
    • 1997
  • Deburring and edge finishing technology as the final process of machining operation is required for manufacturing of advanced precise conponents. But, deburring is considered as a difficult problem on going to the high efficient production and automation in the FMS. Removal of burr couldn't have a standard of its definition because of its various shapes, dimensions and properties and mostly depends on manual treatment. Especially, deburring for cross hole inside is very difficult owing to its shape passing through out perpendicular to a main hole. The electrochemical method is suggested as its solution in practical aspect. Therefore, electrochemical deburring technology needs to be developed for the high efficiency and automation of internal deburring in the cross hole. In this study, the new process in the eliminating burr inside cross hole, electrochemical deburring by the wheel electroplated with Cubic-Boron-Nitrade abrasives, is suggested. Its deburring mechanism is described and machining performances is investigated. Also, CBN electroplated wheel is designed and manufactured and then characteristics of electrochemical deburring are investigated through experiments. Overall electrochemical deburring performance against burr inside cross hole is examined in the various power sources such as peak current and direct current.

Study on Electrochemical Characteristics and Fabrication of Catalytic Electrode (복합 촉매 전극의 제조 및 전기화학적 특성에 관한 연구)

  • 민병승;정원섭;김광호;민병철;이미혜
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.6
    • /
    • pp.401-407
    • /
    • 2002
  • Most of organic compounds discharged from industrial wastewater are treated by chemical oxidation, adsorption and biodegradable process. This process has been demanded a new advanced environmental wastewater treatment process. From this point of view, an electrochemical oxidation process using electrocatalysts has been developed for the destruction of organic compounds. Through this study, a ruthenium oxide/iridium oxide supported on titanium expanded metal was fabricated by thermal decomposition method and its performance was excellent during this experiment.